Turning waste from rice, parsley and other foods into biodegradable plastic

Aug 20, 2014
Turning waste from rice, parsley and other foods into biodegradable plastic

Your chairs, synthetic rugs and plastic bags could one day be made out of cocoa, rice and vegetable waste rather than petroleum, scientists are now reporting. The novel process they developed and their results, which could help the world deal with its agricultural and plastic waste problems, appear in the ACS journal Macromolecules.

Athanassia Athanassiou, Ilker S. Bayer and colleagues at the Italian Institute of Technology point out that plastic's popularity is constantly growing. In 2012, its production reached 288 million tons worldwide, but its ubiquity comes at a cost. Synthetic plastics persist for hundreds or thousands of years while releasing toxic components with the potential to harm the environment and human health. Also, plastics are made out of petroleum, which is a nonrenewable source. The shift to more environmentally friendly bioplastics has been challenging and expensive. Athanassiou's team wanted to find a simple, less costly way to make the transition.

They turned to an organic acid that also occurs naturally and can process cellulose, which is the main building component of plants and also the most abundant polymer in nature. They mixed the acid with parsley and spinach stems, and husks from rice and cocoa pods. Then, they poured the resulting solutions into lab dishes. When tested, the films that formed showed a promising range of traits from brittle and rigid to soft and stretchable—similar to commercial . "This opens up possibilities for replacing some of the non-degrading polymers with the present bioplastics obtained from agro-waste," the researchers conclude.

Explore further: Nature inspires a greener way to make colorful plastics

More information: Direct Transformation of Edible Vegetable Waste into Bioplastics, Macromolecules, 2014, 47 (15), pp 5135–5143. DOI: 10.1021/ma5008557

Abstract
Bioplastics with a wide range of mechanical properties were directly obtained from industrially processed edible vegetable and cereal wastes. As model systems, we present bioplastics synthesized from wastes of parsley and spinach stems, rice hulls, and cocoa pod husks by digesting in trifluoroacetic acid (TFA), casting, and evaporation. In this way, amorphous cellulose-based plastics are formed. Moreover, many other natural elements present in these plants are carried over into the bioplastics rendering them with many exceptional thermo-physical properties. Here, we show that, due to their broad compatibility with cellulose, amorphous cellulose can be naturally plasticized with these bioplastics by simply mixing during processing. Comparison of their mechanical properties with that of various petroleum based synthetic polymers indicates that these bioplastics have equivalent mechanical properties to the nondegrading ones. This opens up possibilities for replacing some of the nondegrading polymers with the present bioplastics obtained from agro-waste.

Related Stories

Video: Using microbes to generate bioplastics

Mar 12, 2014

European scientists are experimenting with bacteria and algae and turn them into bioplastic factories. Their vision: these microorganisms should produce a large portion of our plastic materials without any petroleum.

Nature inspires a greener way to make colorful plastics

Jul 30, 2014

Long before humans figured out how to create colors, nature had already perfected the process—think stunning, bright butterfly wings of many different hues, for example. Now scientists are tapping into ...

Team creates bioplastic made from shrimp shells

May 06, 2014

(Phys.org) —For many people, "plastic" is a one-word analog for environmental disaster. It is made from precious petroleum, after all, and once discarded in landfills and oceans, it takes centuries to degrade.

Waste cooking oil makes bioplastics cheaper

Sep 03, 2012

"Bioplastics" that are naturally synthesized by microbes could be made commercially viable by using waste cooking oil as a starting material. This would reduce environmental contamination and also give high-quality plastics ...

Recommended for you

New CMI process recycles magnets from factory floor

3 hours ago

A new recycling method developed by scientists at the Critical Materials Institute, a U.S. Department of Energy Innovation Hub led by the Ames Laboratory, recovers valuable rare-earth magnetic material from ...

Chemists characterize 3-D macroporous hydrogels

7 hours ago

Carnegie Mellon University chemists have developed two novel methods to characterize 3-dimensional macroporous hydrogels—materials that hold great promise for developing "smart" responsive materials that ...

Substrates change nanoparticle reactivity

13 hours ago

(Phys.org)—Nanoscale materials tend to behave differently than their bulk counterparts. While there are many theories as to why this happens, technological advances in scanning tunneling microscopy (STM) ...

Reviving cottonseed meals adhesives potential

15 hours ago

Cottonseed meal—the leftovers after lint and oil are extracted from cottonseed—is typically fed to ruminant livestock, such as cows, or used as fertilizer. But Agricultural Research Service scientists ...

New concrete composite can heal itself

15 hours ago

In the human body, small wounds are easily treated by the body itself, requiring no further care. For bigger wounds to be healed, the body may need outside assistance. Concrete is like a living body, in that ...

Actuators that mimic ice plants

16 hours ago

Engineers developing moveable robot components may soon take advantage of a trick plants use. Researchers at the Max Planck Institute of Colloids and Interfaces in Potsdam and Harvard University in Cambridge ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.