Rebooted muon experiment tests detector design at SLAC

August 7, 2014
The Muon g-2 Detector Group gathered at the top of End Station A, where the End Station Test Beam Facility is located. (Muon g-2 Detector Group)

Last year, a monster magnet set out from Brookhaven National Lab on an epic, 35-day trek by land and sea to its new home at Fermilab, where it will serve as the heart of a search for evidence of new subatomic particles. Last month, with much less fanfare, researchers came to the End Station Test Beam (ESTB) facility at the Department of Energy's SLAC National Accelerator Laboratory to test the eyes and nerves of the same experiment: a cutting-edge design for a new detector.

The goal of the experiment, called Muon g-2 (pronounced gee-minus-two), is to precisely measure a property of by studying the way their spins precess, or wobble like a slowing top, in the grip of a powerful magnet. Researchers can track this spin by observing the muon's decay into electrons, their lighter, longer-lived siblings.

In the experiment's original incarnation at Brookhaven, researchers discovered the spin rate is a tiny bit different from what theory says it should be – a difference that could indicate the influence of unknown virtual particles that pop into existence from the vacuum, affect the muons, and disappear once more.

However, the researchers at Brookhaven weren't able to measure the property precisely enough to know for sure. That prompted the relocation of the experiment – including the headline-grabbing move of the giant ring magnet – to Fermilab, with its more powerful muon beam.

More Muons = More Data

To take advantage of more muons, and thus more data, a team led by University of Washington physicist David Hertzog developed a new detector design for the experiment, a novel combination of lead-fluoride crystals and silicon photomultiplier chips that they hope will capture more information about the escaping electrons.

Hertzog and his colleagues brought some of the crystals and silicon chips to SLAC's ESTB facility, where electrons from the linear accelerator could stand in for the results of muon decays – but controlled and easily tracked muon decays, unlike what the detectors will face during the actual experiment.

"These detectors will need to catch a tremendous number of muon decays, pinpointing their times and the energies of the electrons," Hertzog said. "The electrons at ESTB can be delivered one at a time and with known energies, so we can see how the crystals and silicon photomultipliers respond."

The tests at ESTB have been much more low-key than the magnet's 3200-mile trek, but Hertzog said his team can also look back at a successful venture.

"This experiment has been really enjoyable," Hertzog said. "We've got good data and our system seems to be working well."

Explore further: Weak nuclear force is less weak

Related Stories

Weak nuclear force is less weak

January 13, 2011

The force that governs some of the reactions that keep our sun shining is not quite as weak as scientists had previously thought. As a consequence, our estimation of how energetic the sun actually is just went up by a tiny ...

How universal is (lepton) universality?

June 4, 2014

Just as a picture can be worth a thousand words, so the rarest processes at the Large Hadron Collider (LHC) can sometimes have the most to tell us. By isolating and counting decays of B+ mesons to a kaon and two leptons, ...

50-foot-wide Muon g-2 electromagnet installed at Fermilab

July 31, 2014

One year ago, the 50-foot-wide Muon g-2 electromagnet arrived at the U.S. Department of Energy's Fermi National Accelerator Laboratory in Illinois after traveling 3,200 miles over land and sea from Long Island, New York. ...

Recommended for you

Understanding nature's patterns with plasmas

August 23, 2016

Patterns abound in nature, from zebra stripes and leopard spots to honeycombs and bands of clouds. Somehow, these patterns form and organize all by themselves. To better understand how, researchers have now created a new ...

Light and matter merge in quantum coupling

August 22, 2016

Where light and matter intersect, the world illuminates. Where light and matter interact so strongly that they become one, they illuminate a world of new physics, according to Rice University scientists.

Measuring tiny forces with light

August 25, 2016

Photons are bizarre: They have no mass, but they do have momentum. And that allows researchers to do counterintuitive things with photons, such as using light to push matter around.

Stretchy supercapacitors power wearable electronics

August 23, 2016

A future of soft robots that wash your dishes or smart T-shirts that power your cell phone may depend on the development of stretchy power sources. But traditional batteries are thick and rigid—not ideal properties for ...

Spherical tokamak as model for next steps in fusion energy

August 24, 2016

Among the top puzzles in the development of fusion energy is the best shape for the magnetic facility—or "bottle"—that will provide the next steps in the development of fusion reactors. Leading candidates include spherical ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.