Proteins: New class of materials discovered

Aug 22, 2014
Arrangement of protein concanavalin A molecules in two different protein crystalline frameworks. Credit: Fudan University/HZB

Scientists at the Helmholtz Center Berlin along with researchers at China's Fudan University have characterized a new class of materials called protein crystalline frameworks.

Thanks to certain helper substances, in PCFs proteins are fixated in a way so as to align themselves symmetrically, forming highly stable crystals. Next, the HZB and Fudan University researchers are planning on looking into how PCFs may be used as functional materials. Their findings are being published today in the scientific journal Nature Communications.

Proteins are sensitive molecules. Everyone knows that – at least from having boiled eggs. Under certain circumstances – like immersion in boiling water – they denature, losing their natural shape, and becoming hard. True, researchers have been able to handle these substances for some time now, even to the point of crystallizing them in their native state. Admittedly, though, this does require considerable effort, but it is the only way how researchers can find out the structure of these substances at high resolution. Moreover, are extremely fragile, highly sensitive and hard to handle.

Now, for the first time ever, scientists at China's Fudan University have managed to work around these downsides by linking the concanavalin A to helper molecules belonging to the sugar family, and to the dye rhodamin. The concanavalin molecules that have been thus fixated tended to arrange themselves symmetrically within the helper molecule framework, forming crystals, in which the proteins achieve high stability and are intricately interconnected – into a protein crystalline framework.

Arrangement of protein concanavalin A molecules in two different protein crystalline frameworks. Credit: Fudan University/HZB

Developing molecular structures like these is pointless unless you know exactly how they form and what their structure looks like at the level of the atoms. During the quest for suitable experimental methods, the Shanghai researchers turned to a Chinese scientist working at the HZB for help. She called her colleagues' attention to the MX beamlines at the HZB's electron storage ring BESSY II.

"Here at the HZB, we were able to offer them our highly specialized crystallography stations – the perfect venue for characterizing PCFs at high resolutions," says Dr. Manfred Weiss, one of the leading scientists working at the HZB-MX laboratory. It quickly became clear that the helper molecules even allowed the researchers to decide how powerfully they wanted them to penetrate the protein frameworks. "This gives the PCFs a great deal of flexibility and variability, which we'll always keep in mind when doing research on potential applications," says Manfred Weiss.

Explore further: Blocking the active site of thiolase

More information: Sakai, F. et al. Protein crystalline frameworks with controllable interpenetration directed by dual supramolecular interactions. Nat. Commun. 5:4634 DOI: 10.1038/ncomms5634 (2014).

add to favorites email to friend print save as pdf

Related Stories

Blocking the active site of thiolase

Nov 07, 2013

Scientists at the University of Oulu, Finland, and at the Helmholtz Center Berlin (HZB) have shown the way to new directions in drug development against African sleeping sickness and other tropical parasitic ...

Watching catalysts at work—at the atomic scale

Jul 25, 2013

Scientists of Helmholtz-Zentrum Berlin (HZB) and collaborators have now combined the spectroscopic method "RIXS" with so-called ab initio theory in order to describe these processes in detail for a model ...

Chemist develops X-ray vision for quality assurance

Jul 24, 2014

It is seldom sufficient to read the declaration of contents if you need to know precisely what substances a product contains. In fact, to do this you need to be a highly skilled chemist or to have genuine ...

Free pores for molecule transport

Jul 31, 2014

Metal-organic frameworks (MOFs) can take up gases similar to a sponge that soaks up liquids. Hence, these highly porous materials are suited for storing hydrogen or greenhouse gases. However, loading of many ...

Recommended for you

New star-shaped molecule breakthrough

8 hours ago

(Phys.org) —Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created.

Smartgels are thicker than water

Sep 19, 2014

Transforming substances from liquids into gels plays an important role across many industries, including cosmetics, medicine, and energy. But the transformation process, called gelation, where manufacturers ...

Separation of para and ortho water

Sep 18, 2014

(Phys.org) —Not all water is equal—at least not at the molecular level. There are two versions of the water molecule, para and ortho water, in which the spin states of the hydrogen nuclei are different. ...

User comments : 0