Protein glue shows potential for use with biomaterials

August 28, 2014
Protein glue shows potential for use with biomaterials
Improving cell adhesion to biomaterials is crucial for the development of implanted neural prostheses such as cochlear implants. Credit: Wikimedia

Researchers at the University of Milan in Italy have shown that a synthetic protein called AGMA1 has the potential to promote the adhesion of brain cells in a laboratory setting. This could prove helpful in improving cell adhesiveness to biomaterials.

Isolating nerve cells from their original organism and culturing them in the laboratory has long been used as a method to study brain metabolism. It has been challenging, however, to provide brain cell cultures with the necessary "adhesion promoters" that facilitate cell attachment, spreading, growth and morphological development.

Improving to biomaterials is also a major challenge in nerve tissue engineering and is crucial for the development of implanted neural prostheses, such as cochlear implants, and biosensors, such as blood glucose biosensors.

Coating the surfaces of negatively charged cell membranes with positively charged promotes nerve adhesion and extension in laboratory settings. Most synthetic proteins, however, are toxic to living cells and thus need to be washed off before cell suspensions are spread onto a new plate. They are also unsuitable for applications that are used inside a living organism.

Within the central nervous system, extracellular matrix substances such as collagen and laminin promote the regeneration, differentiation, adhesion and migration of nerve fibers.

A protein sequence found in collagen and laminin has been identified as the minimum sequence that can mediate the adhesion of many cell types, including .

AGMA1 is a basic synthetic protein that is biocompatible, water soluble, positively charged, and has a similar to that found in collagen and laminin. It is much less toxic to living cells than conventionally used synthetic proteins. AGMA1 is also much easier to prepare on a large scale using relatively low-cost materials. As a result it is much cheaper.

University of Milan scientists tested the potential of AGMA1 to promote the , proliferation, and differentiation of primary in the laboratory.

Different primary cell types from rat brain were cultured on AGMA1, and the results compared with those of cultured under the same conditions on conventional substrates using other commonly used synthetic proteins. All experimental results showed that the performance of AGMA1 in this respect was comparable to that of conventional substrates.

Explore further: Synthetic collagen promotes natural clotting

More information: "A soluble biocompatible guanidine-containing polyamidoamine as promoter of primary brain cell adhesion and in vitro cell culturing." Noemi Tonna, et al. 2014 Sci. Technol. Adv. Mater. 15 045007 DOI: 10.1088/1468-6996/15/4/045007

Related Stories

Recommended for you

Organic semiconductors get weird at the edge

October 6, 2015

As the push for tinier and faster electronics continues, a new finding by scientists at the University of British Columbia (UBC) and Monash University could help inform the design of the next generation of cheaper, more efficient ...

New polymer creates safer fuels

October 1, 2015

Before embarking on a transcontinental journey, jet airplanes fill up with tens of thousands of gallons of fuel. In the event of a crash, such large quantities of fuel increase the severity of an explosion upon impact. Researchers ...

Researchers print inside gels to create unique shapes

September 30, 2015

(—A team of researchers at the University of Florida has taken the technique of printing objects inside of a gel a step further by using a highly shear-rate sensitive gel. In their paper published in the journal ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.