Optical microscope technique confirmed as valid nano-measurement tool

Aug 27, 2014 by Chad Boutin

(Phys.org) —Recent experiments have confirmed that a technique developed several years ago at the National Institute of Standards and Technology (NIST) can enable optical microscopes to measure the three-dimensional (3-D) shape of objects at nanometer-scale resolution—far below the normal resolution limit for optical microscopy (about 250 nanometers for green light). The results could make the technique a useful quality control tool in the manufacture of nanoscale devices such as next-generation microchips.

NIST's experiments show that Through-focus Scanning Optical Microscopy (TSOM) is able to detect tiny differences in 3-D shapes, revealing variations of less than 1 nanometer in size among objects less than 50 nm across. Last year, simulation studies at NIST indicated that TSOM should, in theory, be able to make such distinctions, and now the new measurements confirm it in practice.

"Up until this point, we had simulations that encouraged us to believe that TSOM could allow us to measure the 3-D shape of structures that are part of many modern computer chips, for example," says NIST's Ravi Attota, who played a major role in TSOM's development. "Now, we have proof. The findings should be helpful to anyone involved in manufacturing devices at the nanoscale."

Attota and his co-author, Ron Dixson, first measured the size of a number of using atomic force microscopy (AFM), which can determine size at the nanoscale to high accuracy. However, the great expense and relatively slow speed of AFM means that it is not a cost-effective option for checking the size of large numbers of objects, as is necessary for industrial . TSOM, which uses , is far less restrictive—and allowed the scientists to make the sort of size distinctions a manufacturer would need to make to ensure nanoscale components are constructed properly.

This video is not supported by your browser at this time.

Attota adds that TSOM can be used for 3-D shape analysis without needing complex optical simulations, making the process simple and usable even for low-cost nanomanufacturing applications. "Removing the need for these simulations is another way TSOM could reduce manufacturing costs," he says.

More details on the TSOM technique and its application to 3-D electronics manufacturing can be found in this story, which covers the 2013 simulation study.

Explore further: NIST therapy for ultraviolet laser beams: Hydrogen-treated fibers

More information: R. Attota and R.G. Dixson. Resolving three-dimensional shape of sub-50 nm wide lines with nanometer-scale sensitivity using conventional optical microscopes. Applied Physics Letters, 105, 043101, July 29, 2014, dx.doi.org/10.1063/1.4891676.

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

New absorber will lead to better biosensors

18 hours ago

Biological sensors, or biosensors, are like technological canaries in the coalmine. By converting a biological response into an optical or electrical signal, they can alert us to dangers in our external and internal environments. ...

Ultrafast remote switching of light emission

Sep 30, 2014

Researchers from Eindhoven University of Technology can now for the first time remotely control a miniature light source at timescales of 200 trillionth of a second. They published the results on Sept. 2014 ...

Nanotube cathode beats large, pricey laser

Sep 30, 2014

Scientists are a step closer to building an intense electron beam source without a laser. Using the High-Brightness Electron Source Lab at DOE's Fermi National Accelerator Laboratory, a team led by scientist ...

User comments : 0