New process helps overcome obstacles to produce renewable fuels and chemicals

Aug 21, 2014

(Phys.org) —There's an old saying in the biofuels industry: "You can make anything from lignin except money." But now, a new study may pave the way to challenging that adage. The study from the Energy Department's National Renewable Energy Laboratory (NREL) demonstrates a concept that provides opportunities for the successful conversion of lignin into a variety of renewable fuels, chemicals, and materials for a sustainable energy economy.

"Lignin Valorization Through Integrated Biological Funneling and Chemical Catalysis" was recently published in the Proceedings of the National Academy of Sciences. The NREL-led research project explores an innovative method for upgrading lignin.

The process for converting glucose from biomass into fuels such as ethanol has been well established. However, plants also contain a significant amount of lignin – up to 30 percent of their cell walls. Lignin is a heterogeneous aromatic polymer that plants use to strengthen cell walls, but it is typically considered a hindrance to cost-effectively obtaining carbohydrates, and residual lignin is often burned for process heat because it is difficult to depolymerize and upgrade into useful fuels or chemicals.

"Biorefineries that convert cellulosic biomass into liquid transportation fuels typically generate more lignin than necessary to power the operation," NREL Senior Engineer and a co-author of the study Gregg Beckham said. "Strategies that incorporate new approaches to transform the leftover lignin to more diverse and valuable products are desperately needed."

Although lignin depolymerization has been studied for nearly a century, the development of cost-effective upgrading processes for lignin valorization has been limited.

In nature, some microorganisms have figured out how to overcome the heterogeneity of lignin. "Rot" fungi and some bacteria are able to secrete powerful enzymes or chemical oxidants to break down lignin in plant cell walls, which produces a heterogeneous mixture of . Given this large pool of aromatics present in nature, some bacteria have developed "funneling" pathways to uptake the resulting aromatic molecules and use them as a carbon and energy source.

This new study shows that developing biological conversion processes for one such lignin-utilizing organism may enable new routes to overcome the heterogeneity of lignin. And, that may enable a broader slate of molecules derived from lignocellulosic biomass.

"The conceptual approach we demonstrate can be applied to many different types of biomass feedstocks and combined with many different strategies for breaking down lignin, engineering the biological pathways to produce different intermediates, and catalytically upgrading the biologically-derived product to develop a larger range of valuable molecules derived from lignin," Beckham said. "It holds promise for a wide variety of industrial applications. While this is very exciting, certainly there remains a significant amount of technology development to make this process economically viable."

A patent application has been filed on this research and NREL's Technology Transfer Office will be working with researchers to identify potential licensees of the technology.

In addition, researchers from NREL participated in a recent review on lignin valorization published in Science Magazine. This review highlighted the broad potential for manufacturing value-added products from , including low-cost carbon fiber, engineering plastics and thermoplastic elastomers, polymeric foams and membranes, and a variety of fuels and chemicals all currently sourced from petroleum.

Explore further: Improving commerical viability of biofuels

More information: Jeffrey G. Linger, Derek R. Vardon, Michael T. Guarnieri, Eric M. Karp, Glendon B. Hunsinger, Mary Ann Franden, Christopher W. Johnson, Gina Chupka, Timothy J. Strathmann, Philip T. Pienkos, and Gregg T. Beckham. "Lignin valorization through integrated biological funneling and chemical catalysis." PNAS 2014 ; published ahead of print August 4, 2014, DOI: 10.1073/pnas.1410657111 Lignin Valorization: Improving

"Lignin Processing in the Biorefinery." Arthur J. Ragauskas, et al. Science 16 May 2014: Vol. 344 no. 6185. DOI: 10.1126/science.1246843

Related Stories

Improving commerical viability of biofuels

Jul 08, 2014

(Phys.org) —A University of California, Riverside Bourns College of Engineering professor is one of the authors of a paper recently published in Science that outlines ways companies can commercialize and profit from what w ...

A tipping point for lignin

May 19, 2014

(Phys.org) —Led by Art Ragauskas, the newly appointed Oak Ridge National Laboratory-University of Tennessee Governor's Chair in Biorefining, a multi-institutional team of researchers offers a new view of ...

Recommended for you

Study on pesticides in lab rat feed causes a stir

12 hours ago

French scientists published evidence Thursday of pesticide contamination of lab rat feed which they said discredited historic toxicity studies, though commentators questioned the analysis.

International consortium to study plant fertility evolution

16 hours ago

Mark Johnson, associate professor of biology, has joined a consortium of seven other researchers in four European countries to develop the fullest understanding yet of how fertilization evolved in flowering plants. The research, ...

Making the biofuels process safer for microbes

18 hours ago

A team of investigators at the University of Wisconsin-Madison and Michigan State University have created a process for making the work environment less toxic—literally—for the organisms that do the heavy ...

Why GM food is so hard to sell to a wary public

19 hours ago

Whether commanding the attention of rock star Neil Young or apparently being supported by the former head of Greenpeace, genetically modified food is almost always in the news – and often in a negative ...

The hidden treasure in RNA-seq

Jul 01, 2015

Michael Stadler and his team at the Friedrich Miescher institute for Biomedical Research (FMI) have developed a novel computational approach to analyze RNA-seq data. By comparing intronic and exonic RNA reads, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.