Conductive nanofiber networks for flexible, unbreakable, and transparent electrodes

Aug 26, 2014
Conductive nanofiber networks for flexible, unbreakable, and transparent electrodes
Flexible, unbreakable, and transparent electrodes with conductive nanofiber networks.

Transparent conductors are required as electrodes in optoelectronic devices, such as touch panel screens, liquid crystal displays, and solar cells. Currently, the transparent conductors used for such applications are made of indium tin oxide (ITO).

However, ITO-based transparent electrodes are brittle, prone to breakage, and expensive. Therefore, there is strong demand for alternatives to ITO transparent electrodes .

Tokyo Institute of Technology researchers report the first development of a facile method for the fabrication of flexible and unbreakable transparent electrodes using nanofibers.

Two-dimensional aluminum (Al) nanofiber networks offering transparent conductors were fabricated by simple wet chemical etching of Al metalized polymer films using an electrospun polystyrene nanofiber mask template.

The resulting Al nanowire networks—with a width of 500 nm and an area fraction of 22.0 % —exhibited 80 % optical transmittance and sheet resistance of 45 Ω sq-1, figures of merit that are comparable to conventional transparent conductors. Notably, the fabrication method developed by the Tokyo Tech group is scalable for mass production and cost effective.

Conductive nanofiber networks for flexible, unbreakable, and transparent electrodes
Micrograph of aluminum nanofiber networks fabricated on a poly(ethyleneterephthalate) film by wet chemical etching with an electrospun polymer nanofiber mask.

The resulting flexible, unbreakable, and are promising for applications in both large-scale and mobile including ones that are flexible. Examples of applications are large displays, large interactive touch screens, photovoltaic solar panels, light-emitting diode panels, smart phones, and tablets.

Explore further: Shatterproof screens that save smartphones

More information: Keisuke Azuma, Koichi Sakajiri, Hidetoshi Matsumoto, Sungmin Kang, Junji Watanabe, and Masatoshi Tokita. "Facile fabrication of transparent and conductive nanowire networks by wet chemical etching with an electrospun nanofiber mask template." Materials Letters, 115, 187-189 (2014) (DOI): 10.1016/j.matlet.2013.10.054

add to favorites email to friend print save as pdf

Related Stories

Shatterproof screens that save smartphones

Jun 06, 2014

University of Akron polymer scientists have developed a transparent electrode that could change the face of smartphones, literally, by making their displays shatterproof.

New low-cost, transparent electrodes

Jun 27, 2013

Indium tin oxide (ITO) has become a standard material in light-emitting diodes, flat panel plasma displays, electronic ink and other applications because of its high performance, moisture resistance, and capacity for being ...

Recommended for you

Engineered proteins stick like glue—even in water

Sep 21, 2014

Shellfish such as mussels and barnacles secrete very sticky proteins that help them cling to rocks or ship hulls, even underwater. Inspired by these natural adhesives, a team of MIT engineers has designed ...

Smallest possible diamonds form ultra-thin nanothreads

Sep 21, 2014

For the first time, scientists have discovered how to produce ultra-thin "diamond nanothreads" that promise extraordinary properties, including strength and stiffness greater than that of today's strongest ...

User comments : 0