Researchers identify the metabolic products of foulbrood pathogen in honeybees

Aug 01, 2014
Researchers identify the metabolic products of foulbrood pathogen in honeybees
Credit: Wiley-VCH

Infections with American foulbrood can destroy entire bee populations. A team of German and Dutch researchers has now isolated metabolic products of the pathogen that causes it, Paenibacillus larvae. The structures of the products have been identified, providing insights into the unusual biosynthetic pathways by which they are made. These new findings could help to clarify the mechanisms of infection and thus to find points of attack for effectively combating bee disease. As the researchers report in the journal Angewandte Chemie, these paenilamicins have antibiotic effects that may also be of use in human medicine.

The is one of the most important pollinators in our agricultural and subnatural ecosystems. Our supply with fruit, nuts, and vegetables depends significantly on the fact that enough honey bees fly to the flowers of these plants. In recent years, pesticides and other environmental factors have posed massive health threads to bees. Infectious diseases can cause the death of . The American foulbrood of bees is a frequently encountered notifiable animal disease which causes infected to essentially disintegrate.

Currently, not enough is known about the molecular mechanisms of the infection to effectively combat this disease. A team at the Technical University of Berlin, the Institute for Bee Research in Hohen Neuendorf, and the University of Leiden (Netherlands) has now gained some new insights: The genome of the pathogen contains genes for an interesting class of natural compounds, peptide-polyketide hybrids with antibacterial and antimycotic effects. The researchers found the special biosynthetic pathways for the formation of these metabolites, which does not use ribosomes, to be fascinating.

The team headed by Roderich Süssmuth and Elke Genersch was able to isolate several of these paenilamicins. They were then able to determine their structures and to characterize their amazing bioactivity: The bacteria release these compounds after they have infected in order to keep competitors at bay. Paenibacillus larvae thus effectively kills off the bacterium Paenibacillus alvei in the intestines of the larvae, for example.

The scientists hope that their new insights into the paenilamicins and their will lead to new approaches for combating foulbrood. In addition, the antibiotic effects of these substances could be a starting point for the development of novel human and veterinary pharmaceuticals.

Explore further: Model of dangerous bee disease in Jersey provides tool in fight against honeybee infections

More information: Müller, S., Garcia-Gonzalez, E., Mainz, A., Hertlein, G., Heid, N. C., Mösker, E., van den Elst, H., Overkleeft, H. S., Genersch, E. and Süssmuth, R. D. (2014), Paenilamicin: "Structure and Biosynthesis of a Hybrid Nonribosomal Peptide/Polyketide Antibiotic from the Bee Pathogen Paenibacillus larvae." Angew. Chem. Int. Ed.. DOI: 10.1002/anie.201404572

add to favorites email to friend print save as pdf

Related Stories

Best for bees to be stay-at-homes

Jul 14, 2014

Honey bees with roots in the local environment manage much better in the struggle for survival than imported honey bees from foreign environments.

Parasite-free honey bees enable study of bee health

Jul 01, 2014

An international team of researchers has discovered honey bee colonies in Newfoundland, Canada, that are free of the invasive parasites that affect honey bees elsewhere in the world. The populations offer ...

Scientists flying to the rescue of bees

Jul 17, 2014

A world without bees? Don't even consider it! Of course we would miss the products of the hive, such as honey, pollen and beeswax.  But most of all, these super-pollinators are essential to agriculture.  ...

Honeybees harbor antibiotic-resistance genes

Oct 30, 2012

Bacteria in the guts of honeybees are highly resistant to the antibiotic tetracycline, probably as a result of decades of preventive antibiotic use in domesticated hives. Researchers from Yale University identified eight ...

New technique could help solve mystery of vanishing bees

Mar 22, 2011

Ecologists have developed a better way of rearing bee larvae in the laboratory that could help discover why honey bee populations worldwide are declining. The technique, together with details of how statistics adapted from ...

Recommended for you

Chemical biologists find new halogenation enzyme

Sep 15, 2014

Molecules containing carbon-halogen bonds are produced naturally across all kingdoms of life and constitute a large family of natural products with a broad range of biological activities. The presence of halogen substituents ...

Protein secrets of Ebola virus

Sep 15, 2014

The current Ebola virus outbreak in West Africa, which has claimed more than 2000 lives, has highlighted the need for a deeper understanding of the molecular biology of the virus that could be critical in ...

Protein courtship revealed through chemist's lens

Sep 15, 2014

Staying clear of diseases requires that the proteins in our cells cooperate with one another. But, it has been a well-guarded secret how tens of thousands of different proteins find the correct dancing partners ...

Decoding 'sweet codes' that determine protein fates

Sep 15, 2014

We often experience difficulties in identifying the accurate shape of dynamic and fluctuating objects. This is especially the case in the nanoscale world of biomolecules. The research group lead by Professor Koichi Kato of ...

User comments : 0