Mars deep down

Aug 19, 2014
Credit: ESA/DLR/FU Berlin

Scarring the southern highlands of Mars is one of the Solar System's largest impact basins: Hellas, with a diameter of 2300 km and a depth of over 7 km.

Hellas is thought to have formed between 3.8 and 4.1 billion years ago, when a large asteroid hit the surface of Mars. Since its formation, Hellas has been subject to modification by the action of wind, ice, water and volcanic activity.

Impact craters have also since pock-marked this vast basin floor, two of which are the focus of this image, taken by the High Resolution Stereo Camera on ESA's Mars Express on 17 December 2013. The ground resolution is about 15 metres per pixel.

These craters lie in the deepest, western portion of Hellas, and such a clear view is unusual because dust clouds typically obscure the basin floor. Indeed, this region seems to be covered by a thick blanket of dust.

The larger of the two craters is about 25 km across. A flow of material appears to have been transported from the top left of the scene and into the crater. Zooming in to the smooth mound and the area immediately around it reveals interesting textures that likely resulted from this flow.

Flow features are also seen outside of the craters, and in particular, at the centre left of the image near the top of the frame. Material also seems to have cascaded from the larger crater's rim and into a neighbouring smaller crater, at the far left of the image.

The morphology of many features in the Hellas Basin and its surroundings strongly suggests the presence of ice and glaciers.

For example, in the foreground and around the crater rim, polygons of patterned ground are visible which indicates the presence of water – this pattern occurs when fine grained and porous wet soil freezes.

Indeed, in the deepest parts of the basin, the atmospheric pressure is about 89% higher than at the surface, which may even offer conditions suitable for water. Radar images from NASA's Mars Reconnaissance Orbiter suggest that some craters in Hellas might contain water-ice glaciers several hundred metres thick, buried under layers of dust.

Explore further: Forces of martian nature

add to favorites email to friend print save as pdf

Related Stories

Forces of martian nature

Jul 11, 2014

The surface of Mars is pocked and scarred with giant impact craters and rocky ridges, as shown in this new image from ESA's Mars Express that borders the giant Hellas basin in the planet's southern hemisphere.The ...

Cascading dunes in a Martian crater

May 16, 2014

A new mosaic from ESA's Mars Express shows a swirling field of dark dunes cascading into sunken pits within a large impact crater.

Mars: What lies beneath

Aug 13, 2013

There is much more to Mars than meets the eye. By using the radar on Mars Express, we can see several kilometres below the surface to see what lies beneath.

Ice sculptures fill the deepest parts of Mars

Apr 03, 2012

One of the “weirdest and least understood” areas of Mars, the enormous Hellas Impact Basin contains strange flowing landforms that bespeak of some specialized and large-scale geologic process having ...

Recommended for you

NASA issues 'remastered' view of Jupiter's moon Europa

Nov 21, 2014

(Phys.org) —Scientists have produced a new version of what is perhaps NASA's best view of Jupiter's ice-covered moon, Europa. The mosaic of color images was obtained in the late 1990s by NASA's Galileo ...

European space plane set for February launch

Nov 21, 2014

Europe's first-ever "space plane" will be launched on February 11 next year, rocket firm Arianespace said Friday after a three-month delay to fine-tune the mission flight plan.

Space station rarity: Two women on long-term crew

Nov 21, 2014

For the 21st-century spacewoman, gender is a subject often best ignored. After years of training for their first space mission, the last thing Samantha Cristoforetti and Elana Serova want to dwell on is the ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.