Life on Mars? Implications of a newly discovered mineral-rich structure

Aug 19, 2014
Credit: Mary Ann Liebert, Inc., publishers

A new ovoid structure discovered in the Nakhla Martian meteorite is made of nanocrystalline iron-rich clay, contains a variety of minerals, and shows evidence of undergoing a past shock event from impact, with resulting melting of the permafrost and mixing of surface and subsurface fluids. Based on the results of a broad range of analytical studies to determine the origin of this new structure, scientists present the competing hypotheses for how this ovoid formed, point to the most likely conclusion, and discuss how these findings impact the field of astrobiology in a fascinating article published in Astrobiology.

In the article, "A Conspicuous Clay Ovoid in Nakhla: Evidence for Subsurface Hydrothermal Alteration on Mars with Implications for Astrobiology," Elias Chatzitheodoridis, National Technical University of Athens, Greece, and Sarah Haigh and Ian Lyon, the University of Manchester, UK, describe the use of tools including electron microscopy, x-ray, and spectroscopy to analyze the ovoid structure. While the authors do not believe the formation of this involved biological materials, that is a possible hypothesis, and they note that evidence exists supporting the presence of niche environments in the Martian subsurface that could support life.

"This study illustrates the importance of correlating different types of datasets when attempting to discern whether something in rock is a biosignature indicative of life," says Sherry L. Cady, PhD, Editor-in-Chief of Astrobiology and Chief Scientist at the Pacific Northwest National Laboratory. "Though the authors couldn't prove definitively that the object of focus was evidence of life, their research strategy revealed a significant amount of information about the potential for life to inhabit the subsurface of Mars."

Explore further: New Horizons spacecraft experiences anomaly

More information: The article is available Open Access on the Astrobiology website.

Related Stories

Martian clay minerals might have a much hotter origin

Sep 12, 2012

(Phys.org)—Ancient Mars, like Earth today, was a diverse planet shaped by many different geologic processes. So when scientists, using rovers or orbiting spacecraft, detect a particular mineral there, they ...

Scientists begin Mars exploration in a deep mine

Apr 04, 2014

This week, twenty European scientists will gather at Boulby mine in the UK to begin testing technologies for the exploration of Mars and hunting for deep subsurface life that will aid scientists in their search for extraterrestrial ...

Recommended for you

Uranus' moon Titania

1 hour ago

Like all of the Solar Systems' gas giants, Uranus has an extensive system of moons. In fact, astronomers can now account for 27 moons in orbit around Uranus. Of these, none are greater in size, mass, or surface ...

Image: Europa's blood-red scars

1 hour ago

Jupiter's moon Europa is a bizarre place. There is something undeniably biological about this image, sent back by NASA's Galileo spacecraft – the moon is scarred by deep red gashes, resembling the vibrant ...

A giant Pac-Man to gobble up space debris

2 hours ago

The Clean Space One Project has passed a milestone. The space cleanup satellite will deploy a conical net to capture the small SwissCube satellite before destroying it in the atmosphere. It's one of the solutions ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.