Knee-deep sensing

Aug 19, 2014
The prototype system

A new, non-invasive technique to track the motion of knee bones in 3D with a very high precision has been presented by researchers in Australia. By employing a single-element ultrasound sensor and a fast image registration technique, the team of collaborating researchers from University of New South Wales, University of Canberra and Canberra Hospital achieved sub-millimetre precision, which is essential for clinical applications such as artificial joint component design and diagnosis for ligament injuries.

A joint effort

The kinematic analysis of the of the individual bones in the joint gives essential insight into many applications. Orthopaedic surgeons will use this information for and reconstruction surgery with the goal of restoring normal motion to the knee joint after a or surgery to repair ruptured ligaments.

Kinematic analysis can also be used in other important applications such as gait analysis, normal and abnormal joint trajectory detection in motion analysis, artificial joint component design and rehabilitation, diagnosis for ligament injuries and therapeutic strategy formulation.

Currently, the clinical standard for performing kinematic analysis with sufficient precision involves implanting tantalum beads into the bones, which then appear as high intensity contrast features in radiographs. This technique, however, has significant disadvantages: it is invasive; the patient has to be exposed to X-rays; and the procedure requires the patient to be lying in a horizontal position so cannot be used to capture the 3D motion analysis of the knee joint during normal activities.

The miniaturised sensor is mounted on the skin above the knee joint

Some alternative solutions do allow the capture of the kinematics during normal activities; the merging of 2D X-ray videos with 3D CT scans is one method, but still has the disadvantages of exposure to radiation and a limited field of view. Other proposed methods have used optoelectronic, ultrasonic or video-based systems to track markers on the skin, but the markers can move independently of the underlying bone, making the technique less precise.

A full range of motion

As part of their work into developing novel techniques to aid in the diagnosis of joint deficiencies and artificial joint component design, the researchers took a different approach to the visual representation of knee kinematics by making use of a commercially available, small and lightweight ultrasound sensor. Placed on the skin above the tibia and femur, it is non-invasive, but can penetrate into the muscle tissue on the knee joints to provide high resolution images of the motion of the bones.

This type of single-element ultrasound sensor can sweep any pre-defined trajectory as it has a single line-of-sight. In their set-up, the researchers selected motion trajectories for the image acquisition so that the acquired 2D image slices could be used to automatically determine the 3D motion parameters in order to model the knee joint kinematics. The researchers developed and coded a 2D/2D image registration technique to achieve this.

Tests were carried out on a prototype system, primarily consisting of a phantom bone model immersed in a tank of water, and precision micro-mechanical stages which enabled the sensor to be positioned using three translational and three rotational directions. Using their prototype, the researchers proved that ultrasound can provide precision of less than a millimetre and that it was able to capture anatomical details of bones in the knee joints relative to the sensor, making it a suitable technique for the measurement of knee joint kinematics in clinical use.

Future directions

For this system to be realised for clinical applications, the single element sensor with micro-motors has to be miniaturised in an appropriate casing, filled with acoustic impedance matching liquids and interfacing electronics for signal transmission and reception.

The team are currently working on the sensor miniaturisation along with developing software for kinematic data representation in 3D. They are also developing a signal transmission and reception protocol for the sensor using a field programmable gate array.

The technique presented in this Letter, although intended for the of , could be flexible enough to be used for other human joints such as the shoulder or the hip. The researchers hope to see 3D motion parameter estimation from a few 2D projections of the human anatomy becoming more widespread in medical applications.

Explore further: New knee implant saves the ligaments

More information: "Precision analysis of single-element ultrasound sensor for kinematic analysis of knee joints." M.A. Masum, et al. Electronics Letters, Volume 50, Issue 15, 17 July 2014, p. 1047 – 1048. DOI:  10.1049/el.2014.1230 , Print ISSN 0013-5194, Online ISSN 1350-911X

Related Stories

Technique change benefits limited to 'forefoot' runners

Apr 15, 2014

Runners beware—changing your technique from landing heel first (rearfoot strike) to the ball of your foot first (forefoot strike) may have adverse repercussions, according to research from the University ...

Osteoarthritis and the (not so) painful step toward a cure

Sep 17, 2013

On Tuesday, September 17, JoVE, the Journal of Visualized Experiments, will publish a novel technique for imaging muscle function while in motion. Research in this area could uncover the root of musculoskeletal disord ...

In pitching injuries, the elbow is connected to the hip bone

May 01, 2014

(Medical Xpress)—New University of Florida research suggests that a pitcher's elbow injury could be linked to movement in the hips. Dr. Kevin W. Farmer, an assistant professor in the UF department of orthopaedics and rehabilitation, ...

Recommended for you

Cost-effective production of magnetic sensors

15 hours ago

They are found wherever other measurement methods fail: magnetic sensors. They defy harsh environmental conditions and also function in fluids. A new procedure is now revolutionizing the production of two-dimensional ...

Measurement of components in 3D under water

16 hours ago

Conveying systems for oil and gas, operated in the sea have many important underwater components. The maintenance of such components is elaborate and expensive, as measuring them is complicated. Fraunhofer ...

Plastic parts for internal combustion engines

17 hours ago

Efforts to produce lighter vehicles necessarily include engine parts, such as the cylinder casing, which could shed up to 20 percent of its weight if it were made of fiber-reinforced plastic rather than aluminum ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.