Intracellular imaging gets interactive

Aug 29, 2014
Intracellular imaging gets interactive
Reduction of ubiquinone-rhodol by NADPH/NADH.

A so-called bioparallel chemistry approach is successfully used to image and activate an essential metabolism compound inside a cell.

A system of compounds has been developed that can signal the presence of certain chemical compounds critical to cellular energy metabolism, as well as activating them. The work demonstrates an approach that the authors suggest could be used to control or investigate . They describe their approach as 'bioparallel chemistry', emphasising the contrast with widely known bioorthogonal chemical reactions that do not interfere with native to the cell.

The researchers, a collaboration of researchers at Keio University and the International Centre for Materials Nanoarchitectonics at the National Institute for Materials Science, imaged nicotinamide adenine dinucleotide derivatives – NADH and NADPH. The phosphorylated form, NADPH, is used in photosynthesis and NADH has been identified as a potential treatment for Alzheimer's and Parkinson's diseases. The fluorescent compound developed to image NADH and NADPH was a molecule combining ubiquinone – an that has been shown to react NADH and NADPH in vitro – and the fluorophore rhodol.

The researchers incubated ubiquinone-rhodol with HeLa cells. When the metabolic process that generates NADH was triggered in the cells the fluorescence was found to decrease as the ubiquinone-rhodol was reduced, indicating that NADH increases in cells can be monitored with ubiquinone-rhodol.

Similarly the fluorescence decreased when an artificial iridium based 'promoter' complex was injected into the cell, followed by leaching of the cell contents and ultimately death of the cell. The researchers suggest the damage to the cell subsequent to the injection of the artificial promoter was the result of NADH/NADPH activation upsetting the cell's homeostasis.

"It may be possible to use this strategy to control cellular systems or living systems in general," suggest the researchers in their conclusion. "This system could form the basis of a new approach in medicine, with the development of novel artificial promoters and reagents."

Explore further: World's first successful visualisation of key coenzyme

More information: "Ubiquinone-rhodol (UQ-Rh) for fluorescence imaging of NAD(P)H through intracellular activation", Hirokazu Komatsu, Yutaka Shindo, Kotaro Oka, Jonathan P. Hill and Katsuhiko Ariga, Angew. Chem. Int. Ed. 53 (2014) 3993. DOI: 10.1002/anie.201311192.

add to favorites email to friend print save as pdf

Related Stories

World's first successful visualisation of key coenzyme

Apr 16, 2014

Japanese researchers have successfully developed the world's first imaging method for visualising the behaviour of nicotine-adenine dinucleotide derivative (NAD(P)H), a key coenzyme, inside cells. This feat ...

Recommended for you

World's fastest manufacture of battery electrodes

2 hours ago

New world record: Scientists at the Karlsruhe Institute of Technology (KIT) increased the manufacturing speed of electrode foils coated batch-wise by a factor of three – to 100 meters per minute. This was ...

Waste, an alternative source of energy to petroleum

2 hours ago

The group led by Martín Olazar, researcher in the UPV/EHU-University of the Basque Country's Department of Chemical Engineering, is studying the development of sustainable refineries where it is possible ...

Researchers developing new thermal interface materials

3 hours ago

In the microelectronics world, the military and private sectors alike need solutions to technologic challenges. Dr. Mustafa Akbulut, assistant professor of chemical engineering, and two students lead a project ...

New insights on carbonic acid in water

17 hours ago

Though it garners few public headlines, carbonic acid, the hydrated form of carbon dioxide, is critical to both the health of the atmosphere and the human body. However, because it exists for only a fraction ...

User comments : 0