Intracellular imaging gets interactive

Aug 29, 2014
Intracellular imaging gets interactive
Reduction of ubiquinone-rhodol by NADPH/NADH.

A so-called bioparallel chemistry approach is successfully used to image and activate an essential metabolism compound inside a cell.

A system of compounds has been developed that can signal the presence of certain chemical compounds critical to cellular energy metabolism, as well as activating them. The work demonstrates an approach that the authors suggest could be used to control or investigate . They describe their approach as 'bioparallel chemistry', emphasising the contrast with widely known bioorthogonal chemical reactions that do not interfere with native to the cell.

The researchers, a collaboration of researchers at Keio University and the International Centre for Materials Nanoarchitectonics at the National Institute for Materials Science, imaged nicotinamide adenine dinucleotide derivatives – NADH and NADPH. The phosphorylated form, NADPH, is used in photosynthesis and NADH has been identified as a potential treatment for Alzheimer's and Parkinson's diseases. The fluorescent compound developed to image NADH and NADPH was a molecule combining ubiquinone – an that has been shown to react NADH and NADPH in vitro – and the fluorophore rhodol.

The researchers incubated ubiquinone-rhodol with HeLa cells. When the metabolic process that generates NADH was triggered in the cells the fluorescence was found to decrease as the ubiquinone-rhodol was reduced, indicating that NADH increases in cells can be monitored with ubiquinone-rhodol.

Similarly the fluorescence decreased when an artificial iridium based 'promoter' complex was injected into the cell, followed by leaching of the cell contents and ultimately death of the cell. The researchers suggest the damage to the cell subsequent to the injection of the artificial promoter was the result of NADH/NADPH activation upsetting the cell's homeostasis.

"It may be possible to use this strategy to control cellular systems or living systems in general," suggest the researchers in their conclusion. "This system could form the basis of a new approach in medicine, with the development of novel artificial promoters and reagents."

Explore further: A closer look at a deadly bacterium sets the stage for new vaccines

More information: "Ubiquinone-rhodol (UQ-Rh) for fluorescence imaging of NAD(P)H through intracellular activation", Hirokazu Komatsu, Yutaka Shindo, Kotaro Oka, Jonathan P. Hill and Katsuhiko Ariga, Angew. Chem. Int. Ed. 53 (2014) 3993. DOI: 10.1002/anie.201311192.

Related Stories

World's first successful visualisation of key coenzyme

Apr 16, 2014

Japanese researchers have successfully developed the world's first imaging method for visualising the behaviour of nicotine-adenine dinucleotide derivative (NAD(P)H), a key coenzyme, inside cells. This feat ...

Recommended for you

What happens inside a membrane

May 20, 2015

A new SISSA study has achieved two important results with a single effort: to devise an innovative method to analyse the structure of biological proteins immersed in their physiological context, and to closely ...

Biomedical sensors for disease detection made simple

May 19, 2015

Healthcare researchers are increasingly focused on the early detection and prevention of illnesses. Early and accurate diagnosis is vital, especially for people in developing countries where infectious diseases ...

Studying dynamics of ion channels

May 18, 2015

Scientists from the Vaziri lab at the Vienna Biocenter, together with colleagues at the Institute for Biophysical Dynamics at the University of Chicago, have developed a method using infrared spectroscopy ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.