Hubble eyes galaxy as it gets a cosmic hair ruffling

August 13, 2014
Credit: ESA/Hubble & NASA, Acknowledgement: Luca Limatola

(Phys.org) —From objects as small as Newton's apple to those as large as a galaxy, no physical body is free from the stern bonds of gravity, as evidenced in this stunning picture captured by the Wide Field Camera 3 and Advanced Camera for Surveys onboard the NASA/ESA Hubble Space Telescope.

Here we see two spiral galaxies engaged in a cosmic tug-of-war—but in this contest, there will be no winner. The structures of both objects are slowly distorted to resemble new forms, and in some cases, merge together to form new, super galaxies. This particular fate is similar to that of the Milky Way Galaxy, when it will ultimately merge with our closest galactic partner, the Andromeda Galaxy. There is no need to panic however, as this process takes several hundreds of millions of years.

Not all interacting galaxies result in mergers though. The merger is dependent on the mass of each galaxy, as well as the relative velocities of each body. It is quite possible that the event pictured here, romantically named 2MASX J06094582-2140234, will avoid a merger event altogether, and will merely distort the arms of each spiral without colliding—the cosmic equivalent of a hair ruffling!

These galactic interactions also trigger new regions of star formation in the galaxies involved, causing them to be extremely luminous in the infrared part of the spectrum. For this reason, these types of galaxies are referred to as LIRGs, or Luminous Infrared Galaxies. This image was taken as part of as part of a Hubble survey of the central regions of LIRGs in the local Universe, which also used the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) instrument.

Explore further: Transforming galaxies

Related Stories

Transforming galaxies

February 13, 2012

(PhysOrg.com) -- Many of the Universe's galaxies are like our own, displaying beautiful spiral arms wrapping around a bright nucleus. Examples in this stunning image, taken with the Wide Field Camera 3 on the NASA/ESA Hubble ...

Messier 61 looks straight into Hubble's camera

June 21, 2013

(Phys.org) —The NASA/ESA Hubble Space Telescope has captured this image of nearby spiral galaxy Messier 61, also known as NGC 4303. The galaxy, located only 55 million light-years away from Earth, is roughly the size of ...

Image: Grand swirls from Hubble

June 12, 2014

(Phys.org) —This new Hubble image shows NGC 1566, a beautiful galaxy located approximately 40 million light-years away in the constellation of Dorado (The Dolphinfish). NGC 1566 is an intermediate spiral galaxy, meaning ...

Are ultra-luminous galaxies colliding?

June 27, 2014

(Phys.org) —ltra-luminous infrared galaxies ((ULIRGs) are galaxies whose luminosity exceeds that of a trillion suns, By way of comparison, our Milky Way galaxy has a typical modest luminosity of only about ten billion suns. ...

Hubble sees a galaxy with a glowing heart

July 14, 2014

(Phys.org) —This view, captured by the NASA/ESA Hubble Space Telescope, shows a nearby spiral galaxy known as NGC 1433. At about 32 million light-years from Earth, it is a type of very active galaxy known as a Seyfert galaxy—a ...

Recommended for you

How friendly is Enceladus' ocean to life?

February 5, 2016

How acidic is the ocean on Saturn's icy moon Enceladus? It's a fundamental question to understanding if this geyser-spouting moon could support life.

Hubble finds misbehaving spiral

February 1, 2016

Despite its unassuming appearance, the edge-on spiral galaxy captured in the left half of this NASA/ESA Hubble Space Telescope image is actually quite remarkable.

Inside Rosetta's comet

February 4, 2016

There are no large caverns inside Comet 67P/Churyumov-Gerasimenko. ESA's Rosetta mission has made measurements that clearly demonstrate this, solving a long-standing mystery.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.