Guidelines for enhancing solar cells using surface plasmon polaritons

Aug 18, 2014 by Veronika Szalai

(Phys.org) —Researchers from the NIST Center for Nanoscale Science and Technology (CNST) have established guidelines for using surface plasmon polaritons (SPPs) to improve absorption in both photovoltaic or photoelectrochemical cells used for energy conversion. In both types of photocells, SPPs (electromagnetic waves that travel along a metal-semiconductor interface) have the potential to increase the amount of light absorbed in the active material layer, improving the overall efficiency of light collection in solar energy devices.

The researchers have laid out a framework for calculating the maximum achievable efficiency for any arbitrary material of known permittivity (a measure of how an electric field affects a semiconducting or dielectric medium). In SPP-enabled photocells, a metal, such as gold, that supports SPPs is coated with a semiconductor, such as silicon, , or . Light absorption in the semiconductor material is expected to increase when SPPs concentrate the electromagnetic field at the interface between the metal and the semiconductor.

Building on the calculations of Shockley and Queisser (1961), which set a to the efficiency of a solar cell, the researchers incorporated solutions for Maxwell's equations, a set of equations that form the foundation of classical electrodynamics, to describe SPPs at the interface between a metal and . They were able to derive analytical expressions for the maximum achievable efficiency for photocells that incorporate SPPs.

The team showed that the enhancement depends on the optical properties of the and cannot exceed the thermodynamic limit. They showed that photocells based on cadmium telluride, organic polymer blends, and other materials with small positive real permittivity and large positive imaginary permittivity hold particular promise for improving absorption with SPPs. On the other hand, semiconductors like silicon, gallium arsenide, hematite, and titanium dioxide have inherent optical limitations owing to permittivities that result in a significant fraction of the power of the incoming light being lost in the metal and dissipated as heat.

The researchers believe that their findings will guide the design of future energy devices. Their results will allow researchers to predict whether light trapping strategies will be improved by incorporating SPPs formed by different materials and device geometries.

Explore further: Waveguiding and detecting structure for surface plasmon polaritons on silicon

More information: Design considerations for enhancing absorption in semiconductors on metals through surface plasmon polaritons, C. D. Bohn, A. Agrawal, Y. Lee, C. J. Choi, M. S. Davis, P. M. Haney, H. J. Lezec, and V. A. Szalai, Physical Chemistry Chemical Physics 16, 6084–6091 (2014).

Related Stories

Plasmon-enhanced Polarization-selective filter

Jul 17, 2014

As we all know, some optical devices can only work with a certain incident polarization direction. In this case, a polarizer is necessary to shift the polarization direction of linearly polarized light. A ...

Recommended for you

Researchers prove magnetism can control heat, sound

May 28, 2015

Phonons—the elemental particles that transmit both heat and sound—have magnetic properties, according to a landmark study supported by Ohio Supercomputer Center (OSC) services and recently published by ...

How researchers listen for gravitational waves

May 28, 2015

A century ago, Albert Einstein postulated the existence of gravitational waves in his General Theory of Relativity. But until now, these distortions of space-time have remained stubbornly hidden from direct ...

What's fair?: New theory on income inequality

May 27, 2015

The increasing inequality in income and wealth in recent years, together with excessive pay packages of CEOs in the U.S. and abroad, is of growing concern, especially to policy makers. Income inequality was ...

Scientists one step closer to mimicking gamma-ray bursts

May 27, 2015

Using ever more energetic lasers, Lawrence Livermore researchers have produced a record high number of electron-positron pairs, opening exciting opportunities to study extreme astrophysical processes, such ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.