Greenhouse gases: A new group of soil micro-organisms can contribute to their elimination

Aug 28, 2014

INRA research scientists in Dijon have shown that the ability of soils to eliminate N2O can mainly be explained by the diversity and abundance of a new group of micro-organisms that are capable of transforming it into atmospheric nitrogen (N2).

Nitrous oxide (N2O) is a that is also responsible for destroying the . INRA research scientists in Dijon have shown that the ability of soils to eliminate N2O can mainly be explained by the diversity and abundance of a new group of micro-organisms that are capable of transforming it into (N2). These results, published in Nature Climate Change in September 2014, underline the importance of to the functioning of soils and the services they deliver.

Nitrous oxide (N2O) is one of the principal greenhouse gases, alongside carbon dioxide (CO2) and methane (CH4); it is also responsible for destruction of the ozone layer. Terrestrial ecosystems contribute to about 70% of N2O emissions, at least 45% being linked to the nitrogen-containing products found in agricultural soils (fertilisers, slurry, manure, crop residues, etc.). "In order to lower emissions of N2O and develop more environmentally-friendly agriculture, it is important to understand the processes involved not only in its production but in its elimination", explain the scientists. This elimination can be achieved by micro-organisms living in the soil that are able to reduce N2O into nitrogen (N2), the gas that makes up around four-fifths of the air we breathe and which has no impact on the environment.

INRA scientists, working in collaboration with Swedish and Irish colleagues, have analysed 47 soil samples collected throughout Europe and demonstrated very considerable differences between these soils in terms of their capacities to eliminate N2O. Unlike other greenhouse gases such as (CO2) or methane (CH4), the ability of soils to eliminate N2O and thus act as a sink for this greenhouse gas has been very little studied hitherto.

Their work has shown that this variability is linked to a new group of N2O-consuming micro-organisms. These organisms had been identified by the same research teams in 2013, but had never previously been taken into account in studies aiming at understanding N2O emissions. "We have discovered that it is both the diversity and the abundance of this new group of N2O-consuming micro-organisms that are important to the ability of soils to eliminate N2O", explains Laurent Philippot, an INRA researcher in Dijon.

This study has also helped to clarify the influence of the physicochemical properties of soils on the development of these micro-organisms. Thanks to a metagenomic approach and the analysis of several hundreds of thousands of DNA sequences, the scientists were also able to identify several groups of micro-organisms that could act as bioindicators for the capacity of European soils to transform N2O into N2. The team is currently working on identifying farming practices that could stimulate this new group of N2O-consuming micro-organisms, in order to ensure sustainable agricultural production.

All these findings underline the importance of the biodiversity of soil micro-organisms to the functioning of soils and the services they deliver.

Explore further: Study reveals how farmers could mitigate nitrous oxide emissions

More information: Jones C.M., Spor A., Brennan F.P, Breuil M.C., Bru D., Lemanceau P ., Griffiths B., Hallin S., Philippot L. 2014. "Recently identified microbial guild mediates soil N2O sink capacity." Nature Climate Change Volume: 4,Pages:801–805Year published:(2014)DOI:DOI: 10.1038/nclimate2301

add to favorites email to friend print save as pdf

Related Stories

Nitrous oxide: definitely no laughing matter

Feb 18, 2008

Farmers, food suppliers, policy-makers, business leaders and environmentalists are joining forces to confront the threat of the ‘forgotten greenhouse gas’ by taking part in an influential new forum at the University of ...

New way to measure nitrous oxide emissions

Mar 06, 2012

(PhysOrg.com) -- An accurate new way to measure a potent greenhouse gas emitted during agricultural production will help countries to better manage their environmental impact, thanks to Queensland University of Technology ...

Recommended for you

Ditching coal a massive step to climate goal: experts

1 hour ago

Phasing out coal as an electricity source by 2050 would bring the world 0.5 degrees Celsius closer to the UN's targeted cap for climate warming, an analysis said on the eve of Tuesday's UN climate summit.

Monitoring heavy metals using mussels

4 hours ago

A research team in Malaysia has concluded that caged mussels are useful for monitoring heavy metal contamination in coastal waters in the Strait of Johore. Initial results indicate more pollution in the eastern ...

Climate change report identifies 'the most vulnerable'

5 hours ago

Extreme weather events leave populations with not enough food both in the short- and the long-term. A new report by the Environmental Change Institute (ECI) at the School of Geography and the Environment ...

Obama readies climate change push at UN summit

8 hours ago

President Barack Obama will seek to galvanize international support in the fight against climate change on Tuesday when he addresses the United Nations, with time running out on his hopes of leaving a lasting ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

jalmy
1 / 5 (2) Aug 28, 2014
Good work here. We should be spending money on practical science like this rather than 13 billion to find the meaningless Higgs.