Graphene rubber bands could stretch limits of current healthcare

August 19, 2014
Credit: AlexanderAlUS/Wikipedia/CC BY-SA 3.0

New research published today in the journal ACS Nano identifies a new type of sensor that can monitor body movements and could help revolutionise healthcare.

Although body already exist in different forms, they have not been widely used due to their complexity and cost of production. Now researchers from the University of Surrey and Trinity College Dublin have for the first time treated common elastic bands with graphene, to create a flexible sensor that is sensitive enough for medical use and can be made cheaply.

Once treated, the rubber bands remain highly pliable. By fusing this material with graphene - which imparts an electromechanical response on – the team discovered that the material can be used as a sensor to measure a patient's breathing, heart rate or movement, alerting doctors to any irregularities.

"Until now, no such sensor has been produced that meets needs and that can be easily made. It sounds like a simple concept, but our -infused rubber bands could really help to revolutionise remote healthcare," said Dr Alan Dalton from the University of Surrey.

Co-author, Professor Jonathan Coleman from Trinity College, Dublin commented, "This stretchy material senses motion such as breathing, pulse and joint movement and could be used to create lightweight sensor suits for vulnerable patients such as premature babies, making it possible to remotely monitor their subtle movements and alert a doctor to any worrying behaviours.

"These are extraordinarily cheap compared to existing technologies. Each device would probably cost pennies instead of pounds, making it ideal technology for use in developing countries where there are not enough medically trained staff to effectively monitor and treat patients quickly."

Explore further: Wearable technology can monitor rehabilitation

Related Stories

Wearable technology can monitor rehabilitation

December 13, 2012

Wearable technology is not only for sports and fashion enthusiasts it can also be used to monitor and aid clinical rehabilitation according to new research published in BioMed Central's open access journal BioMedical Engineering ...

Invention allows clear photos in dim light

May 30, 2013

Cameras fitted with a new revolutionary sensor will soon be able to take clear and sharp photos in dim conditions, thanks to a new image sensor invented at Nanyang Technological University (NTU).

Gold shapes up as new-age sensor

July 7, 2014

(Phys.org) —A wearable pressure sensor that is both highly sensitive and cheap to produce could aid the development of prosthetic skin, touch-on flexible displays and energy harvesting, as well as changing the way vital ...

Graphene surfaces on photonic racetracks

July 28, 2014

In an article published in Optics Express, scientists from The University of Manchester describe how graphene can be wrapped around a silicon wire, or waveguide, and modify the transmission of light through it.

Team developing wearable tech for disease monitoring

August 6, 2014

A new wearable vapor sensor being developed at the University of Michigan could one day offer continuous disease monitoring for patients with diabetes, high blood pressure, anemia or lung disease.

Recommended for you

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Could stronger, tougher paper replace metal?

July 24, 2015

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.