The next graphene? Engineers to study new class of ultra-thin film materials

Aug 05, 2014
A prototype device with a 2D channel that will be used by the researchers. Credit: UC Riverside

Three University of California, Riverside engineers are part of team recently awarded a nearly $1.7 million grant from the National Science Foundation to characterize, analyze and synthesize a new class of ultra-thin film materials that could improve the performance of personal electronics, optoelectronic devices and energy conversion systems.

The team is led by Alexander Balandin, University of California Presidential Chair in Electrical and Computer Engineering and founding chair of the materials science and engineering program at UC Riverside's Bourns College of Engineering. Other members of the team are Roger Lake, a UC Riverside professor, Alexander Khitun, a UC Riverside research professor, and Tina Salguero, an assistant professor at the University of Georgia.

The project targets a new class of materials, termed van der Waals materials, and heterostructures implemented with such materials. The ultra-thin materials may consist of just one atomic plane, which explains the term "two-dimensional" materials. The project will investigate novel electrical, optical, and thermal phenomena in such materials and heterostructures.

The research is expected to produce new material synthesis techniques and enable practical applications of ultra-thin film materials in electronic switches, optical detectors, low-power information processing and direct energy conversion. The novel devices implemented with the ultra-thin films of van der Waals materials have potential for high speed and low energy dissipation.

The interest to was stimulated by the success of the ultimate two-dimensional material known as graphene – a single atomic plane of carbon atoms. Graphene research activities resulted in the observation of new interesting physical phenomena and led to numerous proposals of graphene's practical applications, including improving the performance of everything from smart phone to batteries to tennis rackets.

Electrical and thermal conduction in graphene substantially differs from that in conventional bulk three-dimensional materials. The unusually high thermal conductivity of graphene was discovered at UC Riverside by a group led by Balandin. The exceptional heat conduction property of this two-dimensional material is presently finding its way to practical applications in thermal management.

Each member of the NSF-funded team will cover different aspects of the research and application of the van der Walls materials.

Balandin will conduct materials characterization, fabrication and experimental testing of nanodevices, Lake will perform the first principal theoretical analysis and computer simulation of the properties of new materials and devices. Khitun will design circuits and systems based on two-dimensional materials and atomic heterostructures. Salguero will synthesize new using chemical approaches.

Explore further: New material allows for ultra-thin solar cells

add to favorites email to friend print save as pdf

Related Stories

New material allows for ultra-thin solar cells

Aug 04, 2014

Scientists at the Vienna University of Technology have managed to combine two semiconductor materials, consisting of only three atomic layers each. This new structure holds great promise for a new kinds of ...

Recommended for you

Researchers use oxides to flip graphene conductivity

17 hours ago

Graphene, a one-atom thick lattice of carbon atoms, is often touted as a revolutionary material that will take the place of silicon at the heart of electronics. The unmatched speed at which it can move electrons, ...

Researchers make magnetic graphene

23 hours ago

Graphene, a one-atom thick sheet of carbon atoms arranged in a hexagonal lattice, has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic ...

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

Gold 'nano-drills'

Jan 22, 2015

Spherical gold particles are able to 'drill' a nano-diameter tunnel in ceramic material when heated. This is an easy and attractive way to equip chips with nanopores for DNA analysis, for example. Nanotechnologists ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.