The next graphene? Engineers to study new class of ultra-thin film materials

Aug 05, 2014
A prototype device with a 2D channel that will be used by the researchers. Credit: UC Riverside

Three University of California, Riverside engineers are part of team recently awarded a nearly $1.7 million grant from the National Science Foundation to characterize, analyze and synthesize a new class of ultra-thin film materials that could improve the performance of personal electronics, optoelectronic devices and energy conversion systems.

The team is led by Alexander Balandin, University of California Presidential Chair in Electrical and Computer Engineering and founding chair of the materials science and engineering program at UC Riverside's Bourns College of Engineering. Other members of the team are Roger Lake, a UC Riverside professor, Alexander Khitun, a UC Riverside research professor, and Tina Salguero, an assistant professor at the University of Georgia.

The project targets a new class of materials, termed van der Waals materials, and heterostructures implemented with such materials. The ultra-thin materials may consist of just one atomic plane, which explains the term "two-dimensional" materials. The project will investigate novel electrical, optical, and thermal phenomena in such materials and heterostructures.

The research is expected to produce new material synthesis techniques and enable practical applications of ultra-thin film materials in electronic switches, optical detectors, low-power information processing and direct energy conversion. The novel devices implemented with the ultra-thin films of van der Waals materials have potential for high speed and low energy dissipation.

The interest to was stimulated by the success of the ultimate two-dimensional material known as graphene – a single atomic plane of carbon atoms. Graphene research activities resulted in the observation of new interesting physical phenomena and led to numerous proposals of graphene's practical applications, including improving the performance of everything from smart phone to batteries to tennis rackets.

Electrical and thermal conduction in graphene substantially differs from that in conventional bulk three-dimensional materials. The unusually high thermal conductivity of graphene was discovered at UC Riverside by a group led by Balandin. The exceptional heat conduction property of this two-dimensional material is presently finding its way to practical applications in thermal management.

Each member of the NSF-funded team will cover different aspects of the research and application of the van der Walls materials.

Balandin will conduct materials characterization, fabrication and experimental testing of nanodevices, Lake will perform the first principal theoretical analysis and computer simulation of the properties of new materials and devices. Khitun will design circuits and systems based on two-dimensional materials and atomic heterostructures. Salguero will synthesize new using chemical approaches.

Explore further: New material allows for ultra-thin solar cells

Related Stories

New material allows for ultra-thin solar cells

Aug 04, 2014

Scientists at the Vienna University of Technology have managed to combine two semiconductor materials, consisting of only three atomic layers each. This new structure holds great promise for a new kinds of ...

Recommended for you

Graphene and diamonds prove a slippery combination

May 25, 2015

Scientists at the U.S. Department of Energy's Argonne National Laboratory have found a way to use tiny diamonds and graphene to give friction the slip, creating a new material combination that demonstrates ...

Artificial muscles get graphene boost

May 22, 2015

Researchers in South Korea have developed an electrode consisting of a single-atom-thick layer of carbon to help make more durable artificial muscles.

How to make continuous rolls of graphene

May 21, 2015

Graphene is a material with a host of potential applications, including in flexible light sources, solar panels that could be integrated into windows, and membranes to desalinate and purify water. But all ...

Carbon nanothreads from compressed benzene

May 20, 2015

A new carbon nanomaterial – the thinnest possible one-dimensional thread that still retains a diamond-like structure – was created by the controlled, slow compression and decompression of benzene. The ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.