Fungus deadly to AIDS patients found to grow on trees

Aug 21, 2014
This false-color electron microscope image catches the fungus Cryptococcus gattii in the act of producing its infectious spores. The club-shaped blue structure is a reproductive organ called the basidium, which projects off the fungus body like an apple off a tree. The spores are colored yellow, and are like seeds that can give rise to a new organism. Credit: Center for Microbial Pathogenesis, Duke University

Researchers have pinpointed the environmental source of fungal infections that have been sickening HIV/AIDS patients in Southern California for decades. It literally grows on trees.

The discovery is based on the science project of a 13-year-old girl, who spent the summer gathering soil and tree samples from areas around Los Angeles hardest hit by infections of the fungus named Cryptococcus gattii (CRIP-to-cock-us GAT-ee-eye).

Cryptococcus, which encompasses a number of species including C. gattii, causes life-threatening infections of the lungs and brain and is responsible for one third of all AIDS-related deaths.

The study, which appears Aug. 21 in PLOS Pathogens, found strong genetic evidence that three —Canary Island pine, Pohutukawa and American sweetgum—can serve as environmental hosts and sources of these human infections.

"Just as people who travel to South America are told to be careful about drinking the water, people who visit other areas like California, the Pacific Northwest and Oregon need to be aware that they are at risk for developing a , especially if their immune system is compromised," said Deborah J. Springer, Ph.D., lead study author and postdoctoral fellow in the Center for Microbial Pathogenesis at Duke University School of Medicine.

A few years ago, Duke's chairman of Molecular Genetics and Microbiology, Joseph Heitman M.D., was contacted by longtime collaborator and UCLA infectious disease specialist Scott Filler, M.D., whose daughter Elan was looking for a project to work on during her summer break. They decided it would be fun to send her out in search of fungi living in the greater Los Angeles area.

The student sampled 109 swabs of more than 30 tree species and 58 soil samples, grew and isolated the Cryptococcus fungus, and then sent those specimens to Springer at Duke. Springer DNA-sequenced the samples from California and compared the sequences to those obtained from HIV/AIDS patients with C. gattii infections.

She was surprised to find that specimens from three of the tree species were genetically almost indistinguishable from the patient specimens.

The researchers also found that the C. gattii isolated from the environment were fertile, reproducing either by sexual or asexual reproduction.

"That finding is important for long-term prevalence in the environment, because this fungal pathogen will be able to grow, reproduce, disperse spores, and serve as a source of ongoing infections," Springer said.

Explore further: Study finds likely origin of lung fungus invading Pacific Northwest

More information: "Cryptococcus gattii VGIII isolates causing infections in HIV/AIDS patients in Southern California: Identification of the local environmental source as arboreal," Deborah J. Springer, R. Blake Billmyre, Elan E. Filler, Kerstin Voelz, Rhiannon Pursal, Piotr Mieczkowski, Robert A. Larsen, Fred S. Dietrich, Robin C. Mary, Scott G. Filler, and Joseph Heitman. PLOS Pathogens, August. 21, 2014.

add to favorites email to friend print save as pdf

Related Stories

Cryptococcus infections misdiagnosed in many AIDS patients

Sep 01, 2011

Most AIDS patients, when diagnosed with a fungal infection known simply as cryptococcosis, are assumed to have an infection with Cryptococcus neoformans, but a recent study from Duke University Medical Center suggests that a ...

GE eucalyptus tree investigation urged

Jun 15, 2007

Several U.S. environmental groups are upset concerning a possible link between a pathogenic fungus and genetically engineered eucalyptus trees.

Recommended for you

'Hairclip' protein mechanism explained

6 hours ago

Research led by the Teichmann group on the Wellcome Genome Campus has identified a fundamental mechanism for controlling protein function. Published in the journal Science, the discovery has wide-ranging implications for bi ...

Discovery in the fight against antibiotic-resistant bacteria

8 hours ago

For four years, researchers at Universite catholique de Louvain have been trying to find out how bacteria can withstand antibiotics, so as to be able to attack them more effectively. These researchers now understand how one ...

Stem cells born out of indecision

8 hours ago

Scientists at the University of Copenhagen have gained new insight into embryonic stem cells and how blocking their ability to make choices explains why they stay as stem cells in culture. The results have just been published ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.