On the frontiers of cyborg science

Aug 10, 2014

No longer just fantastical fodder for sci-fi buffs, cyborg technology is bringing us tangible progress toward real-life electronic skin, prosthetics and ultraflexible circuits. Now taking this human-machine concept to an unprecedented level, pioneering scientists are working on the seamless marriage between electronics and brain signaling with the potential to transform our understanding of how the brain works—and how to treat its most devastating diseases.

Their presentation is taking place at the 248th National Meeting & Exposition of the American Chemical Society (ACS), the world's largest scientific society.

"By focusing on the nanoelectronic connections between cells, we can do things no one has done before," says Charles M. Lieber, Ph.D. "We're really going into a new size regime for not only the device that records or stimulates cellular activity, but also for the whole circuit. We can make it really look and behave like smart, soft biological material, and integrate it with cells and cellular networks at the whole-tissue level. This could get around a lot of serious health problems in in the future."

These disorders, such as Parkinson's, that involve malfunctioning can lead to difficulty with the most mundane and essential movements that most of us take for granted: walking, talking, eating and swallowing.

Scientists are working furiously to get to the bottom of neurological disorders. But they involve the body's most complex organ—the brain—which is largely inaccessible to detailed, real-time scrutiny. This inability to see what's happening in the body's command center hinders the development of effective treatments for diseases that stem from it.

By using nanoelectronics, it could become possible for scientists to peer for the first time inside cells, see what's going wrong in real time and ideally set them on a functional path again.

For the past several years, Lieber has been working to dramatically shrink cyborg science to a level that's thousands of times smaller and more flexible than other bioelectronic research efforts. His team has made ultrathin nanowires that can monitor and influence what goes on inside cells. Using these wires, they have built ultraflexible, 3-D mesh scaffolding with hundreds of addressable electronic units, and they have grown living tissue on it. They have also developed the tiniest electronic probe ever that can record even the fastest signaling between cells.

Rapid-fire cell signaling controls all of the body's movements, including breathing and swallowing, which are affected in some neurodegenerative diseases. And it's at this level where the promise of Lieber's most recent work enters the picture.

In one of the lab's latest directions, Lieber's team is figuring out how to inject their tiny, ultraflexible electronics into the brain and allow them to become fully integrated with the existing biological web of neurons. They're currently in the early stages of the project and are working with rat models.

"It's hard to say where this work will take us," he says. "But in the end, I believe our unique approach will take us on a path to do something really revolutionary."

Explore further: Making nanoelectronics last longer for medical devices, 'cyborgs'

More information: Title: Nanoelectronics meets biology: From new tools to electronic therapeutics

Abstract
Nanoscale materials enable unique opportunities at the interface between the physical and life sciences, and the interfaces between nanoelectronic devices and cells, cell networks, and tissue makes possible communication between these systems at the length scale relevant to biological function. In this presentation, the development of nanowire nanoelectronic devices and their application as powerful tools for the recording and stimulation from the level of single cells to tissue will be discussed. First, a brief introduction to nanowire nanoelectronic devices as well as comparisons to other tools will be presented to illuminate the unique strengths and opportunities enabled by active electronic devices. Second, opportunities for the creation of powerful new probes capable of intracellular recording and stimulation at scales heretofore not possible with existing electrophysiology techniques will be discussed. Third, we will take an 'out-of-the-box' look and consider merging nanoelectronics with cell networks in three-dimensions (3D). We will introduce general methods and provide examples of synthetic 'cyborg' tissues innervated with nanoelectronic sensor elements that enabling recording and modulating activity in 3D for these engineered tissues. In addition, we will discuss extension of these nanoelectronic scaffold concepts for the development of revolutionary probes for acute and chronic brain mapping as well as their potential as future electronic therapeutics. The prospects for broad-ranging applications in the life sciences as the distinction between electronic and living systems is blurred in the future will be discussed.

References

1. B. Tian et al., Nature Mater. 11, 986-994 (2012)

2. X. Duan et al., Nano Today 8, 351-373 (2013)

3. Q. Qing et al., Nature Nanotechnol. 9, 142-147 (2014)

add to favorites email to friend print save as pdf

Related Stories

Implanted neurons become part of the brain

Aug 04, 2014

Scientists at the Luxembourg Centre for Systems Biomedicine (LCSB) of the University of Luxembourg have grafted neurons reprogrammed from skin cells into the brains of mice for the first time with long-term ...

Mechanism explains complex brain wiring

Jun 11, 2014

How neurons are created and integrate with each other is one of biology's greatest riddles. Researcher Dietmar Schmucker from VIB-KU Leuven unravels a part of the mystery in Science magazine. He describes a mechanism that ...

Functional nerve cells from skin cells

May 21, 2014

A new method of generating mature nerve cells from skin cells could greatly enhance understanding of neurodegenerative diseases, and could accelerate the development of new drugs and stem cell-based regenerative ...

Bioelectronics could lead to a new class of medicine

Jul 02, 2014

Imagine having tiny electronics implanted somewhere in your body that can regulate nerve signals and make symptoms of various disorders go away. That's the vision of the field of bioelectronic medicine—the emerging discipline ...

Recommended for you

Gold nanorods target cancer cells

Dec 18, 2014

Using tiny gold nanorods, researchers at Swinburne University of Technology have demonstrated a potential breakthrough in cancer therapy.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

rsklyar
1 / 5 (1) Aug 11, 2014
"For the past several years, Lieber has been working to dramatically SNITCH cyborg science" at http://issuu.com/...vard_mit

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.