Evolutionary history of honeybees revealed by genomics

Aug 24, 2014
The honeybee is of crucial importance for humanity. One third of our food is dependent on the pollination of fruits, nuts and vegetables by bees and other insects. Credit: Matthew Webster

In a study published in Nature Genetics, researchers from Uppsala University present the first global analysis of genome variation in honeybees. The findings show a surprisingly high level of genetic diversity in honeybees, and indicate that the species most probably originates from Asia, and not from Africa as previously thought.

The honeybee (Apis mellifera) is of crucial importance for humanity. One third of our food is dependent on the pollination of fruits, nuts and vegetables by bees and other insects. Extensive losses of honeybee colonies in recent years are a major cause for concern. Honeybees face threats from disease, , and management practices. To combat these threats it is important to understand the evolutionary history of and how they are adapted to different environments across the world.

"We have used state-of-the-art high-throughput genomics to address these questions, and have identified high levels of in honeybees. In contrast to other domestic species, management of honeybees seems to have increased levels of by mixing bees from different parts of the world. The findings may also indicate that high levels of inbreeding are not a major cause of global colony losses", says Matthew Webster, researcher at the department of Medical Biochemistry and Microbiology, Uppsala University.

Another unexpected result was that honeybees seem to be derived from an ancient lineage of cavity-nesting bees that arrived from Asia around 300,000 years ago and rapidly spread across Europe and Africa. This stands in contrast to previous research that suggests that honeybees originate from Africa.

New findings show a surprisingly high level of genetic diversity in honeybees, and indicate that the species most probably originates from Asia, and not from Africa as previously thought. Credit: Alex Hayward

"The evolutionary tree we constructed from genome sequences does not support an origin in Africa, this gives us new insight into how honeybees spread and became adapted to habitats across the world", says Matthew Webster.

Hidden in the patterns of genome variation are signals that indicate large cyclical fluctuations in population size that mirror historical patterns of glaciation. This indicates that climate change has strongly impacted historically.

"Populations in Europe appear to have contracted during ice ages whereas African populations have expanded at those times, suggesting that environmental conditions there were more favourable", says Matthew Webster.

The researchers also identified specific mutations in genes important in adaptation to factors such as climate and pathogens, including those involved in morphology, behaviour and innate immunity.

"The study provides new insights into evolution and genetic adaptation, and establishes a framework for investigating the biological mechanisms behind disease resistance and adaptation to climate, knowledge that could be vital for protecting honeybees in a rapidly changing world", says Matthew Webster.

Explore further: Team testing biological treatment for pathogens that are killing honeybees and bats

More information: A worldwide survey of genome sequence variation provides insight into the evolutionary history of the honeybee Apis mellifera, Nature Genetics, 2014. dx.doi.org/10.1038/ng.3077

add to favorites email to friend print save as pdf

Related Stories

Managed honeybees linked to new diseases in wild bees

Feb 19, 2014

Diseases that are common in managed honeybee colonies are now widespread in the UK's wild bumblebees, according to research published in Nature. The study suggests that some diseases are being driven into w ...

Bloodsucking mite threatens UK honeybees

Jun 26, 2014

Scientists have discovered how a bloodsucking parasite has transformed Deformed Wing Virus (DWV) into one of the biggest threats facing UK honeybees.

The real reason to worry about bees

Sep 10, 2013

Honeybees should be on everyone's worry list, and not because of the risk of a nasty sting, an expert on the health of those beneficial insects said here today at the 246th National Meeting & Exposition of the American Chemical ...

Recommended for you

Final pieces to the circadian clock puzzle found

7 hours ago

Researchers at the UNC School of Medicine have discovered how two genes – Period and Cryptochrome – keep the circadian clocks in all human cells in time and in proper rhythm with the 24-hour day, as well ...

Measuring modified protein structures

11 hours ago

Swiss researchers have developed a new approach to measure proteins with structures that change. This could enable new diagnostic tools for the early recognition of neurodegenerative diseases to be developed.

Taking a shortcut to improving wheat

Sep 12, 2014

In 2011 the world's farms produced a total of 681 million tonnes of wheat, but with an ever growing demand from a growing population, there is a real need for increasing yields yet further.

Researcher uses genes to map evolution of species

Sep 12, 2014

Genes, whether from apes or the trees they live in, are the storytellers of the origins of a species, according to a Texas A&M University ecosystem science and management assistant professor in College Station.

User comments : 0