On the edge of graphene

August 11, 2014
Image showing the differences along the edge of the graphene

Researchers at the National Physical Laboratory (NPL) have discovered that the conductivity at the edges of graphene devices is different to the central material.

The group used local scanning electrical techniques to examine the local nanoscale electronic properties of , in particular the differences between the edges and central parts of Hall bar devices. The research was published in Scientific Reports, an open access publication from Nature Publishing Group.

The researchers found that the central part of the graphene channel demonstrated electron (n-doped), whereas the edges demonstrated hole conduction (p-doped). They were also able to precisely tune the conduction along the edges of the graphene devices using side-gates, without affecting the conductive properties at the centre.

At a smaller scale, these effects become more acute; when working at the submicron level, the altered properties may affect up to 25% of the material. Although both n- and p-type semiconductors conduct electricity, different types of conduction need to be acknowledged in the development of any devices. Graphene is increasingly used in the electronics industry and new devices will need to accommodate these differences.

The inversion effects were greatest just after the graphene had been cleaned, indicating that the carrier inversion was caused by defects at the channel edge introduced by the plasma etching process used to form the graphene devices. By contrast, a few hours after cleaning, the inversion effects were reduced as airborne molecules had adsorbed onto the uncoupled bonds at the edges of the graphene.

The results of this study are useful for developing graphene nanoribbon devices as well as for looking at edge photocurrents and the quantum Hall effect. The team is extending its work by investigating these effects in structurally different forms of graphene. In doing so, they will be able to compare different types of graphene and look more closely at the cause of these effects.

Explore further: Graphene nanoribbons as electronic switches

More information: Visualisation of edge effects in side- gated graphene nanodevices, www.nature.com/srep/2014/140730/srep05881/full/srep05881.html

Related Stories

Graphene nanoribbons as electronic switches

April 8, 2014

One of graphene's most sought-after properties is its high conductivity. Argentinian and Brazilian physicists have now successfully calculated the conditions of the transport, or conductance mechanisms, in graphene nanoribbons. ...

With 'ribbons' of graphene, width matters

July 3, 2014

Using graphene ribbons of unimaginably small widths – just several atoms across – a group of researchers at the University of Wisconsin-Milwaukee (UWM) has found a novel way to "tune" the wonder material, causing the ...

Light pulses control graphene's electrical behavior

August 1, 2014

Graphene, an ultrathin form of carbon with exceptional electrical, optical, and mechanical properties, has become a focus of research on a variety of potential uses. Now researchers at MIT have found a way to control how ...

Recommended for you

Mathematicians identify limits to heat flow at the nanoscale

November 24, 2015

How much heat can two bodies exchange without touching? For over a century, scientists have been able to answer this question for virtually any pair of objects in the macroscopic world, from the rate at which a campfire can ...

New sensor sends electronic signal when estrogen is detected

November 24, 2015

Estrogen is a tiny molecule, but it can have big effects on humans and other animals. Estrogen is one of the main hormones that regulates the female reproductive system - it can be monitored to track human fertility and is ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.