First measurement of chemical fingerprint of smallest aromatic molecule

Aug 13, 2014
The smallest aromatic molecule cyclopropenyl

A team of astronomers from Leiden University, The Netherlands, measured the chemical fingerprint of the smallest aromatic molecule. According to astrochemical models this molecule should be highly abundant in the universe, but because the means to identify the molecule were lacking, it was not possible to search for it in space. After a decades long search, its spectrum has finally been measured in laboratory experiments. The molecule is an important intermediate for a range of astrochemical reactions through which molecules that are important to the emergence of life form. The results are published online in The Astrophysical Journal Letters.

The astronomers determined the light spectrum of the cyclopropenyl-ion. It is the smallest aromatic molecule, and consists of a ring of three carbon atoms with each a hydrogen atom attached. This charged particle reacts easily with other atoms and , and is therefore important in dozens of in space. Since the now finally has been measured, astronomers can determine where and how abundantly these molecules appear in inter-and circumstellar gas clouds.

Lead author, dr. Dongfeng Zhao who works at the Laboratory of Astrophysics at Leiden Observatory states: "There are only few important molecules for which chemical fingerprints are still fully lacking. The cyclopropenyl- ion can now be removed from the list." The team had to overcome several difficulties to realize this first identification. The molecule had to be generated on the spot in a plasma expansion, where also hundreds of other species are formed. Moreover, ultra-sensitive measurements were required because the number densities are typically low. Nonetheless Zhao and graduate student Kirstin Doney succeeded in measuring the absorption spectrum of the cylopropenyl-ion by guiding a laser beam tens of thousands times back and forth through the expanding plasma using two ultra-reflective and perfectly aligned supermirrors forming the ultimate multipass configuration. In the case of light absorption the number of passes drops and by measuring this number as a function of laser wavelength the shows up.

A plasma jet

The cyclopropenyl-ion turns up in many astrochemical models, but it was impossible to search for it in space until now. Astronomers may now confirm the presence of the molecule by observations with infrared telescopes. Professor Harold Linnartz of Leiden Observatory: "That such an important link was found in our laboratory is a magnificent result; a new piece of the cosmic puzzle has become available. Others now face the challenge to put it in its place in space."

Explore further: Mysterious molecules in space

More information: "Laboratory gas-phase detection of the cyclopropenyl cation (c-C3H3+)", Dongfeng Zhao, Kirstin D. Doney, Harold Linnartz, (2014) The Astrophysical Journal Letters 791, L28. DOI: 10.1088/2041-8205/791/2/L28

add to favorites email to friend print save as pdf

Related Stories

Mysterious molecules in space

Jul 29, 2014

Over the vast, empty reaches of interstellar space, countless small molecules tumble quietly though the cold vacuum. Forged in the fusion furnaces of ancient stars and ejected into space when those stars ...

A new dimension for 3-D protein structures

May 13, 2013

(Phys.org) —3D structures of biological molecules like proteins directly affect the way they behave in our bodies. EPFL scientists have developed a new infrared-UV laser method to more accurately determine ...

Acid ions are more than spectators

Aug 07, 2014

(Phys.org) —X-ray absorption fine structure (EXAFS) measurements carried out at the U.S. Department of Energy's (DOE's) Advanced Photon Source, coupled with state-of-the-art density functional theory (DFT) ...

Research group to study interstellar molecules

Apr 11, 2014

From April 2014, a new group will study interstellar molecules and use them to explore the entire star and planet formation process at the Max Planck Institute for Extraterrestrial Physics. Newly appointed ...

New molecules around old stars

Jun 17, 2014

(Phys.org) —Using ESA's Herschel space observatory, astronomers have discovered that a molecule vital for creating water exists in the burning embers of dying Sun-like stars.

Recommended for you

The hot blue stars of Messier 47

13 hours ago

Messier 47 is located approximately 1600 light-years from Earth, in the constellation of Puppis (the poop deck of the mythological ship Argo). It was first noticed some time before 1654 by Italian astronomer ...

Why is space black?

Dec 16, 2014

Imagine you're in space. Just the floating part, not the peeing into a vacuum hose or eating that funky "ice cream" from foil bags part. If you looked at the Sun, it would be bright and your retinas would ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.