New type of cell movement discovered

Aug 28, 2014
Penn and NIH researchers measured the internal pressure of individual fibroblast cells (in orange) moving through a three-dimensional matrix (in blue). They found that, in this environment, the cells' nuclei operate like an engine's piston to push the cell forward. Credit: University of Pennsylvania/NIDCR

For decades, researchers have used petri dishes to study cell movement. These classic tissue culture tools, however, only permit two-dimensional movement, very different from the three-dimensional movements that cells make in a human body.

In a new study from the University of Pennsylvania and National Institute of Dental and Craniofacial Research, scientists used an innovative technique to study how move in a three-dimensional matrix, similar to the structure of certain tissues, such as the skin. They discovered an entirely new type of cell movement whereby the helps propel cells through the matrix like a piston in an engine, generating pressure that thrusts the cell's plasma membrane forward.

"Our work elucidated a highly intriguing question: how cells move when they are in the complex and physiologically relevant environment of a 3-D extracellular matrix," said Hyun (Michel) Koo, a professor in the Department of Orthodontics at Penn's School of Dental Medicine. "We discovered that the nucleus can act as a piston that physically compartmentalizes the cell cytoplasm and increases the hydrostatic pressure driving the cell motility within a 3-D matrix."

Koo worked with lead author Ryan Petrie and senior author Kenneth Yamada, both of the National Institutes of Health's NIDCR, on the study, which is published this week in Science.

"We think it's a very important normal physiological mechanism of that has not been characterized previously," Petrie said.

The team studied fibroblasts, the most common type of cell found in connective tissue. Fibroblasts themselves produce proteins including collagen and fibronectin that connect in a complex matrix that is found in the skin, the intestines and other tissues in the body.

The researchers used this fibroblast-created matrix to test how cells migrate through a three-dimensional structure. The matrix is crosslinked, meaning its fibers are resistant to bending and flexing as the cells move through.

This video is not supported by your browser at this time.
Penn and NIH researchers have demonstrated a never-before characterized type of cell movement. In this video, a cell's vimentin cytoskeleton (green) pulls the nucleus (red) forward to generate a high-pressure protrusion, called a lobopodia, inside a cell migrating in a physiological 3D extracellular matrix. This time-lapse movie is 30 minutes of time compressed into 4 seconds (450x speed). Credit: NIH

Studies of fibroblasts on two-dimensional surfaces indicated that the most typical form of movement involved protrusions called lamellipodia, created by the polymerization of the protein actin into fibers that push the cell membrane forward. In 2012, however, Petrie and Yamada showed that when fibroblasts migrate they can switch to a different movement strategy when placed in a three-dimensional matrix, using blunt protrusions called lobopodia.

What the researchers did not know was how these lobopodia were formed. Suspecting they might be generated from increased intracellular pressure, the team used sophisticated microelectrodes to measure the of the fluid inside the cell. They found that the pressure was significantly higher in cells moving in a three-dimensional extracellular matrix compared to cells moving along a two-dimensional surface or in a three-dimensional matrix that wasn't cross linked like the fibroblast-derived matrix.

To drill down further and see how the pressure was distributed within the cell moving in a three-dimensional matrix, they measured pressure from in front of and behind the nucleus. Cells moving using lobopodia have elevated pressure in front of the nucleus but not behind it, generating energy to propel the cell forward. Using live-cell confocal microscopy, they observed that the nucleus could be pulled forward, away from the rear of the cell, with the nucleus dividing the cell into low-pressure and high-pressure compartments.

"When a cell is in the matrix, the nucleus tends to be at the back of the cell, and the cell body is very tubular in shape," Petrie said. "It really looked like a piston."

They found that the nucleus is actually pulled forward by the actin filaments that connect the nucleus to the front of the cell. This movement "pressurizes" the cell. The scientists were also able to identify the protein components responsible for moving the nuclear piston, including actomyosin, vimentin and nesprin.

"The pressure itself is what pushes the plasma membrane," Petrie said.

Because this only happened to cells moving in the three-dimensional cell-created matrix and not cells moving in other substrates, the researchers note that the cells must be sensing their physical environment to determine what type of movement to use.

This type of cell migration might be common in other tissues of the body, the researchers noted. When they took chondrocytes from knee cartilage and myofibroblasts from intestinal tissue and placed them in the matrix, those cells used the same type of lobopodia-driven motion.

The discovery could have implications for understanding diseases such as cancer as well, because cancerous cells tend to move in distinct ways from .

"It might give us leverage to find out what is unique about cancer cells so we can target them therapeutically and not affect normal cells," Petrie said.

Importantly, these findings could have broader relevance to other biological systems where living cells are enmeshed within and surrounded by an , such as in biofilms, which are associated with many human infectious diseases.

"This work illustrates how the physical structure of the matrix can influence cellular properties to govern biological function," Koo said. "We are now applying these fascinating principles to further understand how biofilm modulates bacterial virulence to cause oral diseases, such as dental caries."

Explore further: Matrix stiffness is an essential tool in stem cell differentiation, bioengineers report

More information: "Generation of compartmentalized pressure by a nuclear piston governs cell motility in a 3D matrix" Science, www.sciencemag.org/lookup/doi/… 1126/science.1256965

add to favorites email to friend print save as pdf

Related Stories

p53 cuts off invading cancer cells

Mar 24, 2014

The tumor suppressor p53 does all it can to prevent oncogenes from transforming normal cells into tumor cells by killing defective cells or causing them to become inactive. Sometimes oncogenes manage to initiate ...

Recommended for you

'Hairclip' protein mechanism explained

4 hours ago

Research led by the Teichmann group on the Wellcome Genome Campus has identified a fundamental mechanism for controlling protein function. Published in the journal Science, the discovery has wide-ranging implications for bi ...

Discovery in the fight against antibiotic-resistant bacteria

6 hours ago

For four years, researchers at Universite catholique de Louvain have been trying to find out how bacteria can withstand antibiotics, so as to be able to attack them more effectively. These researchers now understand how one ...

Stem cells born out of indecision

6 hours ago

Scientists at the University of Copenhagen have gained new insight into embryonic stem cells and how blocking their ability to make choices explains why they stay as stem cells in culture. The results have just been published ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.