Cassini tracks clouds developing over a Titan sea

Aug 12, 2014 by Preston Dyches
As NASA's Cassini spacecraft sped away from Titan following a relatively close flyby, its cameras monitored the moon's northern polar region, capturing signs of renewed cloud activity. Credit: NASA

(Phys.org) —NASA's Cassini spacecraft recently captured images of clouds moving across the northern hydrocarbon seas of Saturn's moon Titan. This renewed weather activity, considered overdue by researchers, could finally signal the onset of summer storms that atmospheric models have long predicted.

A movie showing the clouds' movement can be seen below.

The Cassini spacecraft obtained the new views in late July, as it receded from Titan after a close flyby. Cassini tracked the system of clouds developing and dissipating over the large methane sea known as Ligeia Mare for more than two days. Measurements of cloud motions indicate wind speeds of around 7 to 10 mph (3 to 4.5 meters per second).

For several years after Cassini's 2004 arrival in the Saturn system, scientists frequently observed cloud activity near Titan's south pole, which was experiencing late summer at the time. Clouds continued to be observed as spring came to Titan's northern hemisphere. But since a huge storm swept across the icy moon's low latitudes in late 2010, only a few small clouds have been observed anywhere on the icy moon. The lack of has surprised researchers, as computer simulations of Titan's atmospheric circulation predicted that clouds would increase in the north as summer approached, bringing increasingly warm temperatures to the atmosphere there.

This animated sequence of Cassini images shows methane clouds moving above the large methane sea on Saturn's moon Titan known as Ligeia Mare. The spacecraft captured the views between July 20 and July 22, 2014, as it departed Titan following a flyby. Cassini tracked the system of clouds as it developed and dissipated over Ligeia Mare during this two-day period. Measurements of the cloud motions indicate wind speeds of around 7 to 10 miles per hour (3 to 4.5 meters per second). The timing between exposures in the sequence varies. In particular, there is a 17.5-hour jump between the second and third frames. Most other frames are separated by one to two hours. Credit: NASA

"We're eager to find out if the clouds' appearance signals the beginning of summer weather patterns, or if it is an isolated occurrence," said Elizabeth Turtle, a Cassini imaging team associate at the Johns Hopkins University Applied Physics Lab in Laurel, Maryland. "Also, how are the related to the seas? Did Cassini just happen catch them over the seas, or do they form there preferentially?"

A year on Titan lasts about 30 Earth years, with each season lasting about seven years. Observing seasonal changes on Titan will continue to be a major goal for the Cassini mission as summer comes to Titan's north and the southern latitudes fall into winter darkness.

Explore further: Cassini prepares for its biggest remaining burn

add to favorites email to friend print save as pdf

Related Stories

Cassini prepares for its biggest remaining burn

Aug 08, 2014

(Phys.org) —NASA's Cassini spacecraft will execute the largest planned maneuver of the spacecraft's remaining mission on Saturday, Aug. 9. The maneuver will target Cassini toward an Aug. 21 encounter with ...

Image: Titan's sunlit edge

Dec 03, 2013

(Phys.org) —The sunlit edge of Titan's south polar vortex stands out distinctly against the darkness of the moon's unilluminated hazy atmosphere. The Cassini spacecraft images of the vortex led scientists ...

Cassini nears 100th Titan flyby with a look back

Mar 06, 2014

(Phys.org) —Ten years ago, we knew Titan as a fuzzy orange ball about the size of Mercury. We knew it had a nitrogen atmosphere—the only known world with a thick nitrogen atmosphere besides Earth. But ...

Cassini gets new views of Titan's land of lakes

Oct 24, 2013

(Phys.org) —With the sun now shining down over the north pole of Saturn's moon Titan, a little luck with the weather, and trajectories that put the spacecraft into optimal viewing positions, NASA's Cassini ...

Recommended for you

SDO captures images of two mid-level flares

Dec 19, 2014

The sun emitted a mid-level flare on Dec. 18, 2014, at 4:58 p.m. EST. NASA's Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts ...

Why is Venus so horrible?

Dec 19, 2014

Venus sucks. Seriously, it's the worst. The global temperature is as hot as an oven, the atmospheric pressure is 90 times Earth, and it rains sulfuric acid. Every part of the surface of Venus would kill you ...

Image: Christmas wrapping the Sentinel-3A antenna

Dec 19, 2014

The moment a team of technicians, gowned like hospital surgeons, wraps the Sentinel-3A radar altimeter in multilayer insulation to protect it from the temperature extremes found in Earth orbit.

Video: Flying over Becquerel

Dec 19, 2014

This latest release from the camera on ESA's Mars Express is a simulated flight over the Becquerel crater, showing large-scale deposits of sedimentary material.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.