Carbon nanotubes and near-infrared lasers promise a cost effective solution for cell membrane manipulation

August 18, 2014
Cell membranes can be manipulated by irradiating a thin film of carbon nanotubes with near-infrared (NIR) laser. Credit: Science and Technology of Advanced Materials

Japanese researchers have developed a new, targeted method for perforating cell membranes in order to deliver drugs to, or manipulate the genes of, individual cells. The paper is published in the journal Science and Technology of Advanced Materials.

The method involves the near-infrared (NIR) laser irradiation of a thin film of carbon nanotubes, which act as an effective photon absorber as well as a stimulus generator.

In cell engineering and tissue biology research, the use of pulsed lasers to stimulate cells has emerged as a powerful technique for enabling selective gene transfection, drug injection or the regulation of . The irradiation of using pulsed lasers causes their membranes to perforate, which significantly accelerates gene transfection or the targeted delivery of drugs.

Among the wide range of photon energies, the near-infrared region is less harmful for biological cells, which absorb very little energy in these wavelengths. The most successful NIR lasers are femtosecond lasers due to their fine spatial resolution with no thermal or mechanical damage to surrounding materials. But femtosecond laser instruments are expensive and require a highly sophisticated optical arrangement and much space, so the research team opted for a more economical nanosecond laser.

In the study, Naotoshi Nakashima and colleagues at Kyushu University used a dish coated with (SWCNTs), which strongly absorb radiation in the NIR region, as an antenna for a nanosecond pulse laser. The team found that cell membranes were either reversibly or irreversibly disturbed following an NIR pulse, depending on the energy of the laser. When a pulse exceeded 17.5 microJoules, the membrane was irreversibly disrupted and the cell died. By contrast, at about 15 microJoules per pulse, the membrane opened and the cell remained alive.

This suggests an inexpensive laser source could be used to prepare a single cell target for selective gene transfection, drug injection or , the authors conclude.

Explore further: New high-tech laser method allows DNA to be inserted 'gently' into living cells

More information: The complete paper is available online:;jsessionid=38CC487D7CFBA229B5F4C1D6FF2D545D.c4

Related Stories

Why cells allow the passage of disease

May 13, 2014

Using a digital microscopic holography technique, specialists at the Center for Research in Optics in Mexico, seek to know under what conditions the membranes of cells are deformed or broken, and determine how the permission ...

Nanoparticles could provide easier route for cell therapy

June 24, 2014

UT Arlington physics researchers may have developed a way to use laser technology to deliver drug and gene therapy at the cellular level without damaging surrounding tissue. The method eventually could help patients suffering ...

Recommended for you

Physicists develop new technique to fathom 'smart' materials

November 26, 2015

Physicists from the FOM Foundation and Leiden University have found a way to better understand the properties of manmade 'smart' materials. Their method reveals how stacked layers in such a material work together to bring ...

Mathematicians identify limits to heat flow at the nanoscale

November 24, 2015

How much heat can two bodies exchange without touching? For over a century, scientists have been able to answer this question for virtually any pair of objects in the macroscopic world, from the rate at which a campfire can ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.