New invention captures Earth's chemical reactions

August 6, 2014
The instrument can study chemical reactions under very high pressures

( —Researchers have found a new way to study chemical reactions that occur deep in the Earth's crust.

The method, developed by an international team of researchers, means that it is now possible for geochemists to find out what kind of chemistry is happening deep in the Earth's crust, beyond the reach of boreholes.

The instrument, which can be used to study chemical reactions under very high pressures, is published online in the journal Angewandte Chemie.

Using nuclear magnetic resonance measurements (NMR), the instrument allows researchers to study chemical reactions at higher pressures and with much higher sensitivity than before.

The device, which is a type of NMR probe head, contains a radio-frequency coil wrapped around a small compressible sample cell which is suspended in a pressurised liquid, contained in a piston-cylinder pressure cell. By exciting the sample with radio waves and looking at how it relaxes, information about the chemistry happening inside can be obtained.

One of the researchers involved in the study, Dr C. André Ohlin from the Faculty of Science at Monash University, said this will allow greater insights into chemical reactions as they occur under extreme pressures deep underground.

"Geochemists know that deep in the Earth's crust can affect water and minerals that eventually migrate to the surface. But we've been unable to measure this accurately until now," he said.

"Our new device changes this. We can now get a much more detailed picture of what is happening deep in the Earth's crust by using this high pressure instrument" Dr Ohlin said.

The device can carry out high-pressure NMR measurements on liquid samples at pressures up to 20,000 Earth atmospheres.

Researchers believe the instrument could also shed light on chemical processes involved in hydraulic fracturing, or "fracking," and the behaviour of buried nuclear waste over long periods of time.

Dr Ohlin said the method replicates high-pressure conditions at the base of the crust up to 70 km below the surface, allowing researchers to gain greater insights into Earth's chemistry.

"There are other methods of achieving high pressures like this such as using diamond-anvil cells, but they only allow very small samples. That makes it very difficult to study the really geochemically interesting systems, which contain atoms such as boron, aluminum and silicon that require more sensitive methods," he said.

"Because our allows for , high-resolution and high-sensitivity heteronuclear NMR measurements, researchers will be able to look at more interesting things like the behaviour of aluminum and silicon, something that's never been done before at these pressures. Eventually this will help us better understand how minerals form—and where to look for them."

The research was selected for the front cover of Angewandte Chemie.

Explore further: Extreme water: Aggressive behaviour of water in the Earth's interior

More information: Pautler, B. G., Colla, C. A., Johnson, R. L., Klavins, P., Harley, S. J., Ohlin, C. A., Sverjensky, D. A., Walton, J. H. and Casey, W. H. (2014), "A High-Pressure NMR Probe for Aqueous Geochemistry." Angew. Chem. Int. Ed.. DOI: 10.1002/anie.201406751

Related Stories

Rainwater discovered at new depths

July 15, 2014

University of Southampton researchers have found that rainwater can penetrate below the Earth's fractured upper crust, which could have major implications for our understanding of earthquakes and the generation of valuable ...

Compressed diamond sheds light on mega-planets

July 16, 2014

Physicists in the United States on Wednesday reported they had compressed diamond to a density greater than that of lead, a technical feat that yields insights into the secrets of giant planets.

Recommended for you

Moonlighting molecules: Finding new uses for old enzymes

November 27, 2015

A collaboration between the University of Cambridge and MedImmune, the global biologics research and development arm of AstraZeneca, has led researchers to identify a potentially significant new application for a well-known ...

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.