Butterflies switch lifestyles using hormones

August 15, 2014
Butterflies switch lifestyles using hormones

Many habitats on Earth change dramatically with the seasons, profoundly affecting food availability, predation pressure and reproductive opportunities for animals living in these seasonal habitats. To survive and reproduce successfully, animals must deal with such seasonal variation in ecological threats and opportunities.

Many are remarkably flexible, and have evolved a range of behavioural, physiological or morphological responses to . For example, many go into a metabolically dormant diapause and cease reproduction, while others migrate away; some even grow wings to disperse from depleted habitats. In essence, they re-prioritize where they spend their (limited) energy, based on the current or future quality of the habitat. But how do they sense what the relevant changes in the environment are? How do they make an informed decision on which changes in their energy budget to employ? And how do they convey this information to all the systems in their body that need to be adjusted to the new circumstances, such as their reproductive organs or flight muscles?

Butterflies on the savannah

Scientists at Wageningen University and Leiden University have now discovered that hormones play a crucial role in regulating this flexibility. The African butterfly they use as a model for seasonal adaptation lives on the savannah with strongly contrasting wet and dry seasons. It expresses two distinct lifestyles in each season. During the wet season, when food is plentiful, butterflies reproduce readily and live short, active lives. In contrast, in the harsh dry season they delay reproduction and are less active, but can live much longer. These butterflies are easy to keep in the laboratory, and previously the researchers had found that the alternative lifestyles are not genetically determined, but instead solely induced by the environment in which the larvae grow up.

Hormones as switch

They have now discovered that ecdysteroid hormones, which are common to all insects, have different concentrations in pupae from the different seasons, sending a systemic signal throughout the body about which environment they are in. Crucially, when developing pupae destined to become dry-season adults are injected with ecdysteroids, they instead become more wet-season–like adults, allocating more resources to and starting to lay eggs earlier. This reveals a switch point during development, when pupae develop into either wet- or dry-season adults depending on whether the hormone is present. These findings show how animals can use systemic hormones to respond to predictive indicators of environmental quality and make strategic decisions that enable them to cope with fluctuating environments. The findings are published in the The American Naturalist.

Explore further: When it's cool, female butterflies chase males in sex role reversal

More information: Ecdysteroid Hormones Link the Juvenile Environment to Alternative Adult Life Histories in a Seasonal Insect, www.jstor.org/stable/info/10.1086/677260

Related Stories

Image: Fires in Australia

April 18, 2013

In the Kimberley region of Western Australia, there are two distinct seasons: a wet season between December and March and a dry season between May and October. Reversals in the direction of prevailing winds are the driving ...

Giant Triassic amphibian was a burrowing youngster

September 2, 2013

Krasiejow, Poland was a vastly different place 230 million years ago during the Triassic Period. It was part of a giant continent called Pangea, had a warm climate throughout the year, and was populated by giant amphibians ...

Climate change may disrupt butterfly flight seasons

November 21, 2013

The flight season timing of a wide variety of butterflies is responsive to temperature and could be altered by climate change, according to a UBC study that leverages more than a century's worth of museum and weather records.

Butterflies illustrate the effects of environmental change

July 24, 2014

Changes in butterfly fauna are yielding surprising insights into our changing environment. The effects of nitrogen from fertilizer or precipitation on the food plants and microclimate of caterpillars have a significant impact ...

Recommended for you

New gene map reveals cancer's Achilles heel

November 25, 2015

Scientists have mapped out the genes that keep our cells alive, creating a long-awaited foothold for understanding how our genome works and which genes are crucial in disease like cancer.

Study suggests fish can experience 'emotional fever'

November 25, 2015

(Phys.org)—A small team of researchers from the U.K. and Spain has found via lab study that at least one type of fish is capable of experiencing 'emotional fever,' which suggests it may qualify as a sentient being. In their ...

How cells in the developing ear 'practice' hearing

November 25, 2015

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular ...

How cells 'climb' to build fruit fly tracheas

November 25, 2015

Fruit fly windpipes are much more like human blood vessels than the entryway to human lungs. To create that intricate network, fly embryonic cells must sprout "fingers" and crawl into place. Now researchers at The Johns Hopkins ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.