Bats bolster brain hypothesis, maybe technology, too

Aug 15, 2014
Bats send out harmonic pairs of frequencies to sense where things are. The strength differences in the high and low frequencies in the pair (minimal in red, greater in blue) help the bat focus on the target front and center, according to research by Brown neuroscientist James Simmons. Credit: James Simmons/Brown University

Amid a neuroscience debate about how people and animals focus on distinct objects within cluttered scenes, some of the newest and best evidence comes from the way bats "see" with their ears, according to a new paper in the Journal of Experimental Biology. In fact, the perception process in question could improve sonar and radar technology.

Bats demonstrate remarkable skill in tracking targets such as bugs through the trees in the dark of night. Brown University neuroscience Professor James Simmons, the review paper's author, has long sought to explain how they do that.

It turns out that experiments in Simmons' lab point to the "temporal binding " as an explanation. The hypothesis proposes that people and animals focus on objects versus the background when a set of neurons in the brain attuned to object features all respond in synchrony, as if shouting in unison "yes, look at that!" When the neurons don't respond together to an object, the hypothesis predicts, an object is relegated to the perceptual background.

Because bats have an especially acute need to track prey through crowded scenes, albeit with echolocation rather than vision, they have evolved to become an ideal testbed for the hypothesis.

"Sometimes the most critical questions about systems in biology that relate to humans are best approached by using an animal species whose lifestyle requires that the system in question be exaggerated in some functional sense so its qualities are more obvious," said Simmons, who plans to discuss the research at the 2014 Cold Spring Harbor Asia Conference the week of September 15 in Suzhou, China.

A Focus of Frequencies

Here's how he's determined over the years that temporal binding works in a bat. As the bat flies it emits two spectra of sound frequencies – one high and one low– into a wide cone of space ahead of it. Within the spectra are harmonic pairs of high and low frequencies, for example 33 kilohertz and 66 kilohertz. These harmonic pairs reflect off of objects and back to the bat's ears, triggering a response from neurons in its brain. Objects that reflect these harmonic pairs back in perfect synchrony are the ones that stand out clearly for the bat.

Of course it's more complicated than just that. Many things could reflect the same frequency pairs back at the same time. The real question is how a target object would stand out. The answer, Simmons writes, comes from the physics of the echolocation sound waves and how bat brains have evolved to process their signal. Those factors conspire to ensure that whatever the bat keeps front-and-center in its echolocation cone will stand out from surrounding interference.

The higher frequency sounds in the bat's spectrum weaken in transit through the air more than lower frequency sounds. The bat also sends out the lower frequencies to a wider span of angles than the high frequencies. So For any given harmonic pair, the farther away or more peripheral a reflecting object is, the weaker the higher frequency reflection in the harmonic pair will be. In the brain, Simmons writes, the bat converts this difference in signal strength into a delay in time (about 15 microseconds per decibel) so that harmonic pairs with wide differences in signal strength end up being perceived as way out of synchrony in time. The temporal binding hypothesis, predicts that the distant or peripheral objects with these out-of-synch signals will be perceived as the background while front-and-center objects that reflect back both harmonics with equal strength will rise above their desynchronized competitors.

With support from sources including the U.S. Navy, Simmons's research group has experimentally verified this. In key experiments (some dating back 40 years) they've sat big brown bats at the base of a Y-shaped platform with a pair of objects – one a target with a food reward and the other a distractor – on the tines of the Y. When the objects are at different distances, the bat can tell them apart and accurately crawl to the target. When the objects are equidistant, the bat becomes confused. Crucially, when the experimenters artificially weaken the high-pitched harmonic from the distracting object, even when it remains equidistant, the bat's acumen to find the target is restored.

In further experiments in 2010 and 2011, Simmons' team showed that if they shifted the distractor object's weakened high frequency signal by the right amount of time (remember: 15 microseconds per decibel) they could restore the distractor's ability to interfere with the target object by restoring the synchrony of the distractor's harmonics. In other words, they used the specific predictions of the hypothesis and their understanding of how it works in bats to jam the bat's echolocation ability.

If targeting and jamming sound like words associated with radar and sonar, that's no coincidence. Simmons works with the U.S. Navy on applications of bat to navigation technology. He recently began a new research grant from the Office of Naval Research that involves bat sonar work in collaboration with researcher Jason Gaudette at the Naval Undersea Warfare Center in Newport, R.I.

Simmons said he believes the evidence he's gathered about the neuroscience of bats not only supports the temporal binding hypothesis, but also can inspire new technology.

"This is a better way to design a radar or sonar system if you need it to perform well in real-time for a small vehicle in complicated tasks," he said.

Explore further: Stealth maneuver allows nectar bats to target insect prey

add to favorites email to friend print save as pdf

Related Stories

How bats stay on target despite the clutter (w/ Video)

Jul 28, 2011

In a paper published this week in Science, researchers at Brown University and from the Republic of Georgia have learned how bats can home in on a target, while nearly instantaneously taking account of and ...

How bats 'hear' objects in their path

Nov 24, 2011

(PhysOrg.com) -- By placing real and virtual objects in the flight paths of bats, scientists at the Universities of Bristol and Munich have shed new light on how echolocation works.  Their research is ...

How bats took over the night

Dec 12, 2013

Blessed with the power of echolocation—reflected sound—bats rule the night skies. There are more than 1,000 species of these echolocating night creatures, compared with just 80 species of non-echolocating ...

Recommended for you

Cat dentals fill you with dread?

Oct 24, 2014

A survey published this year found that over 50% of final year veterinary students in the UK do not feel confident either in discussing orodental problems with clients or in performing a detailed examination of the oral cavity ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

MrVibrating
not rated yet Aug 16, 2014
Additionally, the example given of harmonic pairs 33 and 66 kHz fall in an octave relationship. Presumably this is the key harmonic, since the actual 'harmonic' quality in question is octave equivalence, and the stuff of this equivalence is a percept of sameness vs difference.

However this doesn't auger so well for potential spin-off techs as we currently have no AI capable of percieving this 2f equivalence. Perhaps this is unneccesary - perhaps all that's needed is an ultra wideband signal of many octaves; apply the appropriate fourier-type transform and high-acuity sonar will fall out.

I'm skeptical this would be replicating the bat's experience though. The percept of equivalence between factors of two of a fundamental is too innate to be incidental to their internal imagery - it is not simply critical synchrony that colours their 'visual' definition, but a vital palette of inequivalence.

How can a machine experience the 'sameness' of octaves?
JoeBuddha
not rated yet Aug 18, 2014
Are you kidding me? How can I take a science article seriously when it uses the phrase "animals and people"?
MrVibrating
not rated yet Aug 18, 2014
Yeah, cos animals are people too right?

Seriously though, what would you prefer -"humans and non-humans"? Sounds a bit stilted, no? And you can't say "humans and animals" since humans are animals too...

Got nothing to add on-point?