Baby universe picture brought closer to theory

Aug 04, 2014

Last year, the Planck Telescope revealed the most detailed picture of the cosmic microwave background, the relic radiation from the Big Bang. But this map contains features that challenge the standard model of cosmology, the theory that describes our entire Universe from early on. Who is right, the map or the theory? Scientists from EPFL (Switzerland) and CEA (France) have shown that several of these enigmatic features disappear from the map by processing Planck telescope's data differently and including other effects, such as the motion of the Milky Way. The findings are published in the August 4th, 2014 edition of the Journal of Cosmology and Astroparticle Physics.

Our eyes see what is called visible . But there is a lot of light that we can't see, like ultraviolet and . It turns out that a weak glow of microwave radiation fills the entire sky, in regions between stars. But where does this glow come from?

According to our current understanding of the Big Bang, this glow of microwave radiation is relic light emitted by the Universe when it was a mere 380 000 years old. Before that, the Universe was completely opaque, since light was trapped by a hot plasma. But as the Universe expanded and cooled, electrons and protons combined to form stable atoms, and light was free to propagate for the first time.

In principle, this first light has traveled through time and is reaching us now in the form of microwave radiation. Slight variations in this background radiation indicate the seeds of current structure in the Universe, from planets, solar systems, and galaxies all the way to clusters of galaxies, clusters of clusters.

The European Space Agency set out to this radiation to unprecedented resolution by launching the Planck space telescope. Scientists collected information from the telescope and processed it to remove unwanted foreground light, like from stars and galaxies. The information was then assembled together to give the most detailed map of microwave radiation of cosmic origin – a microwave photograph of the early Universe.

The Cold Spot: a few tens of millionths of a degree, a big problem for the theory

While the map is generally in agreement with our current theory of the Big Bang, it also contains unexpected features at large-scales, called anomalies. For example, the famous "cold-spot". On Planck's map, this region of the is characterized by its unusually low temperature. It is just a matter of a few tens of millionths of a degree difference in temperature, which might seem negligible, but it is enough for the map to no longer entirely fit the .

Cosmologists are at odds over the source of these anomalies. Do these large-scale features reveal phenomena that require new physics? Or does the information gathered by the Planck space telescope need to be processed differently?

Tuning the data

A recent European study led by EPFL cosmologist Anaïs Rassat indicates that several of the anomalies disappear if the data from the Planck satellite are processed in a new way. "Using new techniques to separate the foreground light from the background, and taking into account effects like the motion of our Galaxy, we found that most of the claimed anomalies we studied, like the cold spot, stop being problematic," explains Rassat.

Previous methods were left with some regions of unwanted light that needed to be masked in the analysis. Instead, Rassat and her partners from CEA in France, studied a map that avoided masking techniques altogether, giving access to the whole sky. Next, they corrected the data by taking into account the way our Galaxy moves. They also adjusted the data for distortions in the relic light itself as it traveled through moving charged particles in an expanding Universe as well as other known gravitational effects.

Still room for new physics

While Rassat and her collaborators have shown that several anomalies were no longer problematic, others may nevertheless persist in the data. For Rassat, this work is just a first step towards systematically going through all of the possible large-scale irregularities and trying to explain their origin. Until then, there is still room for .

Explore further: What is the cosmic microwave background radiation?

add to favorites email to friend print save as pdf

Related Stories

Reinterpreting dark matter

Jul 02, 2014

Tom Broadhurst, an Ikerbasque researcher at the University of the Basque Country (UPV/EHU), has participated alongside scientists of the National Taiwan University in a piece of research that explores cold ...

South Pole telescope detector aids study of the universe

Nov 13, 2013

Center for Nanoscale Materials (CNM) users from Argonne's High Energy Physics and Materials Science divisions helped design and operate part of the South Pole Telescope, a project that aims a large telescope ...

Recommended for you

Can astronomy explain the biblical Star of Bethlehem?

Dec 24, 2014

Bright stars top Christmas trees in Christian homes around much of the world. The faithful sing about the Star of Wonder that guided the wise men to a manger in the little town of Bethlehem, where Jesus was ...

Hubbles spies the beautiful galaxy IC 335

Dec 24, 2014

This new NASA/ESA Hubble Space Telescope image shows the galaxy IC 335 in front of a backdrop of distant galaxies. IC 335 is part of a galaxy group containing three other galaxies, and located in the Fornax ...

Image: Multicoloured view of supernova remnant

Dec 22, 2014

Most celestial events unfold over thousands of years or more, making it impossible to follow their evolution on human timescales. Supernovas are notable exceptions, the powerful stellar explosions that make ...

Ultra-luminous X-ray sources in starburst galaxies

Dec 22, 2014

Ultra-luminous X-ray sources (ULXs) are point sources in the sky that are so bright in X-rays that each emits more radiation than a million suns emit at all wavelengths. ULXs are rare. Most galaxies (including ...

When a bright light fades

Dec 22, 2014

Astronomer Charles Telesco is primarily interested in the creation of planets and stars. So, when the University of Florida's giant telescope was pointed at a star undergoing a magnificent and explosive death, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.