How the Asian monsoon affects methane emissions

Aug 20, 2014
How the Asian monsoon affects methane emissions
The Tibetan Plateau experienced strong climate variations over the past six thousand years.

(Phys.org) —Scientists at the University of Bristol's Cabot Institute have shown how changes in the Asian monsoon affected emissions of methane, a prominent greenhouse gas, from the Tibetan Plateau.

The concentration of methane in the atmosphere has more than doubled over the past century. This appears to be due to many factors, including leaks from gas wells, increased rice cultivation and the prominent role of ruminant animals in our dairy and meat industry. It could also be caused partly by feedbacks on natural processes, but that remains the subject of intense investigation.

The new results, published today in Nature Communications, focus on a single wetland from the Tibetan Plateau that experienced strong climate variations over the past six thousand years. They show that during relatively dry intervals, the biomass of methane-producing microorganisms decreased while methane-consuming microorganisms apparently became more efficient. The combined result would have been less methane emission to the atmosphere.

According to the project leader and Director of the Cabot Institute, Professor Rich Pancost: "What we have done is connect the dots, providing strong evidence for previous researchers' inferences. In modern settings, from dryer settings are generally low. Consequently, previous researchers have speculated that as the Asian monsoon became weaker over the past six thousand years, methane emissions also decreased. Here, we show that this is exactly what happened to this peatland on the Tibetan Plateau."

The authors used a combination of chemical tools to reconstruct the past changes in microbial populations. First author Yanhong Zheng said: "All organisms have cell membranes but the molecules that comprise those membranes differ, especially for microorganisms; if these molecules are preserved in soils or sediments, they act as molecular fossils – or biomarkers – for those organisms in the past. We can then quantify them and that gives insight into ancient microbial communities."

The authors focussed on archaeol, a compound that likely derives from methanogens (or methane-producing organisms) in these settings. During a dry interval from six to four thousand years ago, its concentration decreased by about 50 per cent, suggesting that the methane producing community became much smaller, probably because these organisms favour wet habitats.

Professor Pancost added: "This is only a single site, but our study has wider implication for how these systems work. The dry interval we studied arose from large scale changes in atmospheric circulation patterns, and just as past changes impacted methane emissions, so will future climate change."

The paper does not directly address whether emissions will increase in the future. However, Professor Pancost said: "A stronger monsoon – and many models indicate that monsoon intensity will increase due to global warming – could be associated with greater emission, but that is a tentative forecast. The real lesson of this work is how complex and interrelated biological, chemical and climate systems are, such that human-induced climate change will almost certainly have unexpected consequences."

Explore further: Figuring out methane's role in the climate puzzle

More information: 'Holocene variations in peatland methane cycling associated with the Asian summer monsoon system' by Yanhong Zheng, Joy S. Singarayer, Peng Cheng, Zhao Liu, Xuefeng Yu, Paul J. Valdes and Richard D. Pancost in Nature Communications. DOI: 10.1038/ncomms5631

add to favorites email to friend print save as pdf

Related Stories

Figuring out methane's role in the climate puzzle

Jul 09, 2014

The U.S. may be on the verge of an economy driven by methane, the primary component of natural gas, which burns cleaner than coal and is undergoing a production boom. It has poised the country as a top fuel producer globally, ...

Climate: Meat turns up the heat

Jul 21, 2014

Eating meat contributes to climate change, due to greenhouse gasses emitted by livestock. New research finds that livestock emissions are on the rise and that beef cattle are responsible for far more greenhouse gas emissions ...

Ebullition causes methane emissions in tropical reservoirs

Aug 14, 2014

For the first time, methane emissions by ebullition from tropical reservoirs have been accurately quantified, revealing that this emission pathway depends on both the water level in the reservoir, which is dependent on the ...

Recommended for you

Coral growth rate plummets in 30-year comparison

3 hours ago

A team of researchers working on a Carnegie expedition in Australia's Great Barrier Reef has documented that coral growth rates have plummeted 40% since the mid-1970s. The scientists suggest that ocean acidification ...

Environmentalists and industry duke it out over plastic bags

4 hours ago

Campaigns against disposable plastic shopping bags and their environmental impact recently scored a major win. In August, California lawmakers passed the first statewide ban on the bags, and Governor Jerry Brown is expected ...

Global change: Trees continue to grow at a faster rate

6 hours ago

Trees have been growing significantly faster since the 1960s. The typical development phases of trees and stands have barely changed, but they have accelerated—by as much as 70 percent. This was the outcome ...

User comments : 0