Unraveling atomic-scale edge structure of nanoscale graphene islands

Jul 09, 2014
Unraveling atomic-scale edge structure of nanoscale graphene islands
Figure 1 Left: High resolution Scanning Tunneling Microscopy image showing different structure on the top (green) and bottom (red) edges. Right: Atomic structures determined from theory that explain the images and the stability of the low coordinated carbon atom on the Klein edge.

Through high resolution scanning tunneling microscopy measurements and first principles Density Functional Theory based calculations, a novel atomic scale edge structure was shown to be stable for graphene islands grown on cobalt surfaces. The low-coordinated carbon atom at the Klein edge structure is stabilized by interaction with the cobalt surface. This is the first demonstration, combining experiment and theory, that the interaction of the carbon atoms with a metal substrate stabilizes the low coordinated carbon edge atoms. In models for the growth of graphene on metal substrates, such low coordinated atoms at the growing edge play a special role. These results, which demonstrate such stability, will play a significant role in further development of these models and will help guide future strategies to grow graphene nanostructures with atomic scale control of edge structure.

A leading method to produce graphene nanostructures with potential for new electronic devices involves chemical reactions and growth of the one-atom thick graphene on metal surfaces. Low-coordinated carbon atoms at the growing edge play a key role in leading models for the growth mechanism. This work can lead to improved growth and the needed control of structure.

  • CFN Capabilities: CFN Theory and Computation Facility: Prezzi from the Nanoscience Institute in Modena (Italy) and visitor to Columbia, in collaboration with Hybertsen from the CFN, performed quantum mechanical simulations of competing edge structures, showing that the zigzag and Klein structures with the final carbon atom over a hollow in the cobalt surface maximize interaction with the surface, stabilizing the low coordinated at the edges and explaining experimental observations.
  • The Flynn, Nuckolls and Heinz groups at Columbia University grew graphene islands on the cobalt (0001) and measured the properties of these islands using scanning tunneling microscopy, demonstrating that the islands generally exhibited straight, well-oriented edges. High resolution images reveal the atomic scale differences between opposite edges.

Explore further: With 'ribbons' of graphene, width matters

More information: "Edge Structures for Nanoscale Graphene Islands on Co(0001) Surfaces." Deborah Prezzi, et al. ACS Nano 8 (6), 5765–5773, (2014)

add to favorites email to friend print save as pdf

Related Stories

Graphene growth on silver

Jan 14, 2014

Users from Northwestern University, working with the Center for Nanoscale Materials EMMD Group at Argonne, have demonstrated the first growth of graphene on a silver substrate.

With 'ribbons' of graphene, width matters

Jul 03, 2014

Using graphene ribbons of unimaginably small widths – just several atoms across – a group of researchers at the University of Wisconsin-Milwaukee (UWM) has found a novel way to "tune" the wonder material, ...

Graphene 'onion rings' have delicious potential

Jul 18, 2013

Concentric hexagons of graphene grown in a furnace at Rice University represent the first time anyone has synthesized graphene nanoribbons on metal from the bottom up—atom by atom.

Recommended for you

Demystifying nanocrystal solar cells

7 hours ago

ETH researchers have developed a comprehensive model to explain how electrons flow inside new types of solar cells made of tiny crystals. The model allows for a better understanding of such cells and may ...

Researchers use oxides to flip graphene conductivity

Jan 26, 2015

Graphene, a one-atom thick lattice of carbon atoms, is often touted as a revolutionary material that will take the place of silicon at the heart of electronics. The unmatched speed at which it can move electrons, ...

Researchers make magnetic graphene

Jan 26, 2015

Graphene, a one-atom thick sheet of carbon atoms arranged in a hexagonal lattice, has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic ...

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.