Unleashing the power of quantum dot triplets

Jul 24, 2014
Unleashing the power of quantum dot triplets
One approach of making computers faster relies on quantum dots, a kind of artificial atom, easily controlled by applying an electric field. A new study demonstrates that changing the coupling of three coherently coupled quantum dots with electrical impulses can help better control them. Credit: Tooski, S. B. et al.

Quantum computers have yet to materialise. Yet, scientists are making progress in devising suitable means of making such computers faster. One such approach relies on quantum dots—a kind of artificial atom, easily controlled by applying an electric field. A new study demonstrates that changing the coupling of three coherently coupled quantum dots (TQDs) with electrical impulses can help better control them. This has implications, for example, should TQDs be used as quantum information units, which would produce faster quantum computers due to the fact that they would be operated through electrical impulses. These findings have been published in EPJ B by Sahib Babaee Tooski and colleagues affiliated with both the Institute of Molecular Physics at the Polish Academy of Sciences, in Poznan, Poland, the University of Ljubljana and the Jožef Stefan Institute in Slovenia.

The authors study the interplay between internal electrons—which, due to electron spins, are localised on the different quantum dots. They then compare them with the interactions of the conducting electrons, which, at low temperature, can increase the electrical resistance, due to what is referred to as the Kondo effect. This effect can be induced by coupling one of the with the electrodes.

Tooski and colleagues thus demonstrate that by changing the coupling of the quantum dot with the electrodes, they can help induce the quantum phase transition between entangled and disentangled electron states. Such variations are typically detectable through a sudden jump in the entropy and the spin susceptibility. However, theoretical investigations outlined in the paper and based on numerical renormalisation group analysis suggest that the detection of such change is best achieved by measuring the . This is because, as the authors show, the conductance should be different for the entangled and disentangled states.

Explore further: Arrays of electrons trapped in nanoscale circuitry could form the basis for future scalable quantum computers

More information: Tooski, S. B. Bułka, B. R. Žitko, R. Ramšak, A. (2014), Entanglement switching via the Kondo effect in triple quantum dots. European Physical Journal B. DOI: 10.1140/epjb/e2014-41025-6

add to favorites email to friend print save as pdf

Related Stories

Quantum leap in lasers brightens future for quantum computing

Jul 22, 2014

Dartmouth scientists and their colleagues have devised a breakthrough laser that uses a single artificial atom to generate and emit particles of light. The laser may play a crucial role in the development of quantum computers, ...

Quantum information motion control is now improved

Apr 03, 2012

Physicists have recently devised a new method for handling the effect of the interplay between vibrations and electrons on electronic transport. Their paper is about to be published in the European Physical Journal B. This s ...

Recommended for you

Physicist pursues superconductivity mysteries

1 hour ago

More than a quarter of a century after its discovery, high-temperature superconductivity still challenges condensed matter physicists. For Binghamton's Pegor Aynajian, the key to unlocking the mystery—which will ultimately ...

Why does coffee spill more often than beer? (w/ Video)

1 hour ago

Watch even the most careful waiter bring a cup of coffee to your table, and you'll realize that carrying liquid is not easy. When set in motion, the coffee starts sloshing, little waves appear, and spilling ...

Measuring NIF's enormous shocks

1 hour ago

NIF experiments generate enormous pressures—many millions of atmospheres—in a short time: just a few billionths of a second. When a pressure source of this type is applied to any material, the pressure ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.