Ultra-cold atom transport made simple

July 7, 2014
Ultra-cold atom transport made simple

Techniques for controlling ultra-cold atoms travelling in ring traps currently represent an important research area in physics. A new study gives a proof of principle, confirmed by numerical simulations, of the applicability to ultra-cold atoms of a very efficient and robust transport technique called spatial adiabatic passage (SAP). Yu Loiko from the University of Barcelona, Spain, and colleagues have, for the first time, applied SAP to inject, extract, and filter the velocity of neutral atoms from and into a ring trap. Such traps are key to improving our understanding of phenomena involving ultra-cold atoms, which are relevant to high-precision applications such as atom optics, quantum metrology, quantum computation, and quantum simulation.

The authors focused on controlling the transfer of a single atom between the outermost waveguides of a system composed of two dipole waveguides and a ring trap, using the SAP technique. They calculated the explicit conditions for SAP tunnelling, which depend on two factors: the atomic velocity along the input waveguide and the initial atom population distribution among what physicists refer to as the transverse vibrational states.

To check the performance of the proposed approach, they relied on a numerical integration of the corresponding equation—namely the so-called two-dimensional Schrödinger—with parameter values for and an optical dipole ring trap. Although the SAP technique had previously been reported on with regard to experiments using light beams, it had yet to be applied to the case of .

Potential applications of these findings include the preparation of cold atom ring systems to investigate quantum phase transitions, matter wave Sagnac interferometry, the stability of persistent currents and superconducting quantum interference devices (SQUIDs), propagation of matter wave solitons and vortices, cold collisions, artificial electromagnetism, and others.

Explore further: The coldest spot in the known universe

More information: Y. Loiko, V. Ahufinger, R. Menchon-Enrich, G. Birkl and J. Mompart (2014), Coherent injecting, extracting, and velocity filtering of neutral atoms in a ring trap via spatial adiabatic passage, European Physical Journal D DOI: 10.1140/epjd/e2014-40696-3

Related Stories

The coldest spot in the known universe

February 3, 2014

Everyone knows that space is cold. In the vast gulf between stars and galaxies, the temperature of gaseous matter routinely drops to 3 Kelvin, or 454 degrees below zero Fahrenheit.

Atoms and light get together to form cool, complex patterns

March 24, 2014

(Phys.org) —The physics behind some of nature's spectacular sights have been observed at very low temperatures - less than a thousandth of a degree away from absolute zero - by a collaboration of researchers from the University ...

Snapshots of atoms make it into physics textbooks

June 6, 2014

Physicist Aneta Stodólna captured the electron positions of hydrogen atoms on camera for the very first time. The snapshots from her quantum-style microscope gained worldwide attention and even made it into physics textbooks. ...

Ultra-thin wires for quantum computing

June 17, 2014

Take a fine strand of silica fiber, attach it at each end to a slow-turning motor, gently torture it over an unflickering flame until it just about reaches its melting point and then pull it apart. The middle will thin out ...

Recommended for you

Perfectly accurate clocks turn out to be impossible

October 7, 2015

Can the passage of time be measured precisely, always and everywhere? The answer will upset many watchmakers. A team of physicists from the universities of Warsaw and Nottingham have just shown that when we are dealing with ...

The topolariton, a new half-matter, half-light particle

October 7, 2015

A new type of "quasiparticle" theorized by Caltech's Gil Refael, a professor of theoretical physics and condensed matter theory, could help improve the efficiency of a wide range of photonic devices—technologies, such as ...

Professor solves 140-year fluid mechanics enigma

October 7, 2015

A Purdue University researcher has solved a 140-year-old enigma in fluid mechanics: Why does a simple formula describe the seemingly complex physics for the behavior of elliptical particles moving through fluid?

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.