Transiting exoplanet with longest known year

Jul 21, 2014
This artist's conception shows the Uranus-sized exoplanet Kepler-421b, which orbits an orange, type K star about 1,000 light-years from Earth. Kepler-421b is the transiting exoplanet with the longest known year, circling its star once every 704 days. It is located beyond the "snow line" -- the dividing line between rocky and gaseous planets -- and might have formed in place rather than migrating from a different orbit. Credit: David A. Aguilar (CfA)

Astronomers have discovered a transiting exoplanet with the longest known year. Kepler-421b circles its star once every 704 days. In comparison, Mars orbits our Sun once every 780 days. Most of the 1,800-plus exoplanets discovered to date are much closer to their stars and have much shorter orbital periods.

"Finding Kepler-421b was a stroke of luck," says lead author David Kipping of the Harvard-Smithsonian Center for Astrophysics (CfA). "The farther a planet is from its star, the less likely it is to transit the star from Earth's point of view. It has to line up just right."

Kepler-421b orbits an orange, type K star that is cooler and dimmer than our Sun. It circles the star at a distance of about 110 million miles. As a result, this Uranus-sized planet is chilled to a temperature of -135° Fahrenheit.

As the name implies, Kepler-421b was discovered using data from NASA's Kepler spacecraft. Kepler was uniquely suited to make this discovery. The spacecraft stared at the same patch of sky for 4 years, watching for stars that dim as planets cross in front of them. No other existing or planned mission shows such long-term, dedicated focus. Despite its patience, Kepler only detected two transits of Kepler-421b due to that world's extremely long orbital period.

The planet's orbit places it beyond the "snow line" - the dividing line between rocky and gas planets. Outside of the snow line, water condenses into ice grains that stick together to build planets.

"The snow line is a crucial distance in theory. We think all gas giants must have formed beyond this distance," explains Kipping.

Since gas can be found extremely close to their , in orbits lasting days or even hours, theorists believe that many exoplanets migrate inward early in their history.

Kepler-421b shows that such migration isn't necessary. It could have formed right where we see it now.

"This is the first example of a potentially non-migrating gas giant in a transiting system that we've found," adds Kipping.

The host star, Kepler-421, is located about 1,000 light-years from Earth in the direction of the constellation Lyra.

This research has been accepted for publication in The Astrophysical Journal and is available online. Additional information can be found at www.cfa.harvard.edu/~dkipping/kepler421.html

Explore further: Is our solar system weird?

add to favorites email to friend print save as pdf

Related Stories

Is our solar system weird?

Jul 18, 2014

Is our Solar System normal? Or is it weird? How does the Solar System fit within the strange star systems we've discovered in the Milky Way so far?

Newfound planet is Earth-mass but gassy

Jan 06, 2014

An international team of astronomers has discovered the first Earth-mass planet that transits, or crosses in front of, its host star. KOI-314c is the lightest planet to have both its mass and physical size ...

Astronomers find a new type of planet: The 'mega-Earth'

Jun 02, 2014

Astronomers announced today that they have discovered a new type of planet - a rocky world weighing 17 times as much as Earth. Theorists believed such a world couldn't form because anything so hefty would ...

'Neapolitan' exoplanets come in three flavors

Jun 02, 2014

(Phys.org) —The planets of our solar system come in two basic flavors, like vanilla and chocolate ice cream. We have small, rocky terrestrials like Earth and Mars, and large gas giants like Neptune and ...

Recommended for you

Big black holes can block new stars

35 minutes ago

Massive black holes spewing out radio-frequency-emitting particles at near-light speed can block formation of new stars in aging galaxies, a study has found.

POLARBEAR seeks cosmic answers in microwave polarization

46 minutes ago

An international team of physicists has measured a subtle characteristic in the polarization of the cosmic microwave background radiation that will allow them to map the large-scale structure of the universe, ...

New radio telescope ready to probe

3 hours ago

Whirring back and forth on a turning turret, the white, 40-foot dish evokes the aura of movies such as "Golden Eye" or "Contact," but the University of Arizona team of scientists and engineers that commissioned ...

Exomoons Could Be Abundant Sources Of Habitability

Oct 20, 2014

With about 4,000 planet candidates from the Kepler Space Telescope data to analyze so far, astronomers are busy trying to figure out questions about habitability. What size planet could host life? How far ...

Partial solar eclipse over the U.S. on Thursday, Oct. 23

Oct 17, 2014

People in most of the continental United States will be in the shadow of the Moon on Thursday afternoon, Oct. 23, as a partial solar eclipse sweeps across the Earth. For people looking through sun-safe filters, from Los Angeles, ...

A newborn supernova every night

Oct 17, 2014

Thanks to a $9 million grant from the National Science Foundation and matching funds from the Zwicky Transient Facility (ZTF) collaboration, a new camera is being built at Caltech's Palomar Observatory that ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

ivo_dekeijzer
5 / 5 (1) Jul 21, 2014
"No other existing or planned mission shows such long-term, dedicated focus."

What a big lie. The ESA PLATO mission has much greater focus and will look continuously at two large patches of sky for a minimum of 6 years. The new ESA GAIA mission carries a camera of 1 Gigapixel or 10 times as large as that of Kepler and as part (of it`s many mission objectives) will look for planets up to 300 light years away for up to 5 years minimum. Up to tens of thousands of planets are expected to be discovered.

Many other earth and space based missions are doing the same and many more will be doing the same. For example earth based planet hunting instruments are scanning the same stars for years and years on end to increase their data sets. And upcoming instruments as the famous ESPRESSO third generation instrument on the European Southern Observatory's Very Large Telescope will even be able to see earth sized planets in actual earth sized orbits around the much brighter stars (like our sun).