How knots can swap positions on a DNA strand

July 3, 2014
One of the knots grows in size, while the other diffuses along the contour of the former. Credit: Peter Virnau, JGU

Physicists of Johannes Gutenberg University Mainz (JGU) and the Graduate School of Excellence "Materials Science in Mainz" (MAINZ) have been able with the aid of computer simulations to confirm and explain a mechanism by which two knots on a DNA strand can interchange their positions.

For this, one of the knots grows in size while the other diffuses along the contour of the former. Since there is only a small free energy barrier to swap, a significant number of crossing events have been observed in , i.e., there is a high probability of such interchange of positions.

"We assume that this swapping of positions on a DNA strand may also happen in ," explained Dr. Peter Virnau of the JGU Institute of Physics, who performed the computer simulation together with his colleagues Benjamin Trefz and Jonathan Siebert.

The scientists expect that the mechanism may play an important role in future technologies such as nanopore sequencing, where long DNA strands are sequenced by being pulled though pores. Long DNA strands of more than 100,000 have an increasing chance of knots, which is relevant for sequencing.

Explore further: Model system used to illustrate phase transition of a mixture of active and passive particles

More information: Benjamin Trefz, Jonathan Siebert, Peter Virnau, How molecular knots can pass through each other , Proceedings of the National Academy of Sciences, 19 May 2014 . DOI: 10.1073/pnas.1319376111

Related Stories

Oxford Nanopore unveils portable genome sequencer – MinION

February 17, 2014

( —U.K. based Oxford Nanopore Technologies has made good on a promise made two years ago to produce an inexpensive genome sequencer that is based on nanopore technology. David Jaffe, with the Broad Institute reported ...

Recommended for you

Turning CO2 to stone

October 25, 2016

Earth has limits to the amount of carbon dioxide in its atmosphere before the environment as we know it starts to change. Too much CO2 absorbed by the oceans makes the water more acidic. Too much in the atmosphere warms the ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.