Smart paint signals when equipment is too hot to handle

Jul 04, 2014
Smart paint signals when equipment is too hot to handle
Zafar Iqbal

(Phys.org) —NJIT researchers have developed a paint for use in coatings and packaging that changes color when exposed to high temperatures, delivering a visual warning to people handling material or equipment with the potential to malfunction, explode, or cause burns when overheated.

The was commissioned and funded by the U.S. Army Armament Research Development and Engineering Center (ARDEC) at Picatinny Arsenal in response to dangerous conditions in the desert during the war in Iraq, for example, where soldiers reported temperatures near munitions that had sometimes exceeded 190 degrees F, far in excess of the shells' design limits.

"It would have been helpful to have had some sort of a calibrated temperature-triggered signal warning, 'Don't go near or pick up this shell!' "said Zafar Iqbal, a research professor in the Department of Chemistry and Environmental Science, who led the joint NJIT/ARDEC research team. Referred to as a "thermal-indicating composition" and applied as a coating or a mark on packaging, the material turns different shades of color from blue to red in response to a range of temperatures, beginning at about 95 degrees F. It was awarded a U.S. patent in May of this year.

"We essentially modified commercial paints and introduced nanotechnology-based concepts to tailor the trigger temperatures," Iqbal explained, adding that his laboratory is starting to develop inks related to the paints that can be applied by inkjet printers.

His current research came out of earlier work at Honeywell, then Allied Corp., leading to a "smart coating" embedded with color-sensitive materials that indicated how long a substance had been exposed to temperatures high enough to compromise its functionality. The time-temperature device has been widely used by the World Health Organization, for example, on vaccine packaging labels.

Time-temperature coding is also important for munitions, which can be stored for many years and transported long distances. Until now, there has been no cost-effective means for identifying when munitions have experienced critical exposures, including over a period of several days. Thermal stabilizers incorporated in weapon containers can be depleted by extended exposure to . Iqbal said the coding will be included in the thermal-indicating paints as an element of the final product for the Army.

The technology has potentially wider applications as well, including as a temperature indicator for factory machines and household appliances and tools signaling they have become dangerously hot, or as a warning to firefighters of the intensity of a fire on the other side of a door coated with the thermal paint. Several large corporations expressed preliminary interest in it at a recent expo. The patent is jointly owned by NJIT and the U.S. Army; NJIT plans to commercialize the technology.

Iqbal, who is currently working on a book entitled "Nanomaterials Science and Technology" to be published by Cambridge University Press, has been awarded 22 U.S. patents on a wide range of technologies.

He has collaborated with the U.S. Army over the years since joining the Feltman Research Laboratory at Picatinny Arsenal in New Jersey in 1969, two years after earning his Ph.D. at Cambridge University, where he conducted research at the renowned Cavendish Lab, the site of such major scientific advances as the discovery of the electron and the double-helix structure of DNA. He was a research scientist for the Army until 1977, before he returned to teaching and research for several years and then served as a senior principal scientist and project manager for nearly 20 years at Honeywell and its predecessor companies, Allied and Allied Signal, before joining NJIT.

Iqbal is currently developing a related technology that would signal whether a product has been damaged by force, shock or exposure to dangerous chemicals, such as carcinogens, or to radiation.

"A smart coded coating is like a smart skin – it will provide a visual or sensing signal to tell you if there is a problem," he says, noting that sports helmets used in American football would be one potential application, helping coaches to determine whether a player has received a damaging blow to the head.

Explore further: NJIT granted FAA permission to test unmanned aircraft systems

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Tesla says decision on battery factory months away

2 hours ago

(AP)—Electric car maker Tesla Motors said Thursday that it is preparing a site near Reno, Nevada, as a possible location for its new battery factory, but is still evaluating other sites.

Comfortable climate indoors with porous glass

21 hours ago

Proper humidity and temperature play a key role in indoor climate. In the future, establishing a comfortable indoor environment may rely on porous glass incorporated into plaster, as this regulates moisture ...

Crash-testing rivets

22 hours ago

Rivets have to reliably hold the chassis of an automobile together – even if there is a crash. Previously, it was difficult to predict with great precision how much load they could tolerate. A more advanced ...

Customized surface inspection

22 hours ago

The quality control of component surfaces is a complex undertaking. Researchers have engineered a high-precision modular inspection system that can be adapted on a customer-specific basis and integrated into ...

Sensors that improve rail transport safety

22 hours ago

A new kind of human-machine communication is to make it possible to detect damage to rail vehicles before it's too late and service trains only when they need it – all thanks to a cloud-supported, wireless ...

Tiny UAVs and hummingbirds are put to test

Jul 30, 2014

Hummingbirds in nature exhibit expert engineering skills, the only birds capable of sustained hovering. A team from the US, British Columbia, and the Netherlands have completed tests to learn more about the ...

User comments : 0