Scientists track quantum errors in real time

July 14, 2014 by Holly Lauridsen
Scientists track quantum errors in real time
Credit: Shutterstock

(Phys.org) —Scientists at Yale University have demonstrated the ability to track real quantum errors as they occur, a major step in the development of reliable quantum computers. They report their results in the journal Nature.

Quantum computers could significantly improve the computational power of modern computers, but a major problem stands in the way: information loss, or quantum . To combat errors, physicists must be able to detect that an error has occurred and then correct it in , a process known as quantum error correction.

"Ninety-nine percent of will be correcting errors," explained Yale physicist Rob Schoelkopf, Sterling Professor of Applied Physics and Physics. "Demonstrating error correction that actually works is the biggest remaining challenge for building a quantum computer."

Data in standard computers are stored in bits as either 0 or 1, known as classical states. They are largely insensitive to their surroundings. In contrast, quantum computers rely on quantum bits, or qubits, which store data in a third, very fragile state known as a quantum state—a superposition of 0 and 1 simultaneously. Changes in the quibit's environment can force it revert back to one of the classical states of 0 or 1. And when a qubit leaves the quantum state, it also loses the data it was carrying.

In the new research, Schoelkopf's group and other Yale collaborators tackled the first step in quantum error correction—successfully identifying errors as they happen, in their case by means of a reporter atom.

Identifying quantum-computing errors in real time is particularly challenging: Qubits are so fragile that searching for errors can result in more errors. To determine if an error occurred, Schoelkopf and his team relied on an ancilla, or a more stable reporter atom, which detected errors without destroying the state and relayed that information back to the scientists on a computer.

During their experiments, the scientists used a superconducting box containing the ancilla and an unknown number of , or light particles, which were cooled to approximately -459°F, a fraction of a degree above absolute zero. This minimized quantum errors induced by the environment. The team then tracked the photons in the box over time to see if and when the photons escaped. Losing photons from the box indicated lost information, or the occurrence of a quantum error.

The errors need to be detected without learning the exact conditions in the superconducting box, including the number of photons, because determining the conditions in the box can disrupt the qubit quantum state and result in more errors. So the ancilla reported only the photon parity—whether an even or odd number of quantum photons were present in the box—in real time. A change in parity—for example, from even to odd—indicated the loss of a single photon without revealing whether the box had changed from six to five photons or from four to three photons.

The team found success in their first experiment and demonstrated for the first time the tracking of naturally occurring errors, in real time, as would be needed for a real quantum computer.

"We could see errors coming up as they happened," said Yale graduate student and co-author Andrei Petrenko. "We could actually observe on the screen just the kinds of patterns that we were hoping to see."

"This success has given us more confidence to go forward, " said Schoelkopf.

The Yale team is now studying how to fix errors, the second step in and an essential capability for functional quantum computers.

"It is hard to estimate how long it will be until we have functional quantum computers," Schoelkopf said, "but it will be sooner than we think."

Explore further: Three tiny qubits, another big step toward quantum computing

More information: Tracking photon jumps with repeated quantum non-demolition parity measurements , DOI: 10.1038/nature13436

Related Stories

Three tiny qubits, another big step toward quantum computing

September 29, 2010

(PhysOrg.com) -- The rules that govern the world of the very small, quantum mechanics, are known for being bizarre. One of the strangest tenets is something called quantum entanglement, in which two or more objects (such ...

At Yale, quantum computing is a (qu)bit closer to reality

February 15, 2012

(PhysOrg.com) -- Physicists at Yale University have taken another significant step in the development of quantum computing, a new frontier in computing that promises exponentially faster information processing than the most ...

New qubit control bodes well for future of quantum computing

January 14, 2013

(Phys.org)—Yale University scientists have found a way to observe quantum information while preserving its integrity, an achievement that offers researchers greater control in the volatile realm of quantum mechanics and ...

In quantum computing, light may lead the way

October 8, 2013

(Phys.org) —Light might be able to play a bigger, more versatile role in the future of quantum computing, according to new research by Yale University scientists.

Physicists correct quantum errors

February 3, 2014

Scientists from the FOM Foundation and the Technical University Delft, working together at the Kavli Institute of Nanoscience, have succeeded in detecting and correcting errors during the storage of quantum states in a diamond. ...

Quantum computation: Fragile yet error-free

June 12, 2014

In a close collaborative effort, Spanish and Austrian physicists have experimentally encoded one quantum bit (qubit) in entangled states distributed over several particles and for the first time carried out simple computations ...

Recommended for you

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

Rogue wave theory to save ships

July 29, 2015

Physicists have found an explanation for rogue waves in the ocean and hope their theory will lead to devices to warn ships and save lives.

Researchers build bacteria's photosynthetic engine

July 29, 2015

Nearly all life on Earth depends on photosynthesis, the conversion of light energy into chemical energy. Oxygen-producing plants and cyanobacteria perfected this process 2.7 billion years ago. But the first photosynthetic ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

George_Rajna
Jul 14, 2014
This comment has been removed by a moderator.
ralph638s
not rated yet Jul 14, 2014
So, D-Wave sells quantum computers, yet according to this article, we haven't yet developed any reliable quantum computers, so what are those guys selling? Unreliable quantum computers?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.