Scientists use simple, low cost laser technique to improve properties and functions of nanomaterials

Jul 22, 2014
Mesoporous silicon nanowires were scanned by a focused laser beam in two different patterns, imaged by bright-field optical microscope, as depicted by (a) and (c), as well as fluorescence microscopy, as depicted by (b) and (d). Evidently, the images hidden in boxes shown in (a) and (c) are clearly revealed under fluorescence microscopy. Credit: National University of Singapore

By 'drawing' micropatterns on nanomaterials using a focused laser beam, scientists could modify properties of nanomaterials for effective applications in photonic and optoelectric applications

The challenges faced by researchers in modifying properties of nanomaterials for application in devices may be addressed by a simple technique, thanks to recent innovative studies conducted by scientists from the National University of Singapore (NUS).

Through the use of a simple, efficient and low cost technique involving a focused laser beam, two NUS research teams, led by Professor Sow Chorng Haur from the Department of Physics at the NUS Faculty of Science, demonstrated that the properties of two different types of materials can be controlled and modified, and consequently, their functionalities can be enhanced.

Said Prof Sow, "In our childhood, most of us are likely to have the experience of bringing a magnifying glass outdoors on a sunny day and tried to focus sunlight onto a piece of paper to burn the paper. Such a simple approach turns out to be a very versatile tool in research. Instead of focusing sunlight, we can focus laser beam onto a wide variety of nanomaterials and study effects of the focused laser beam has on these materials."

Micropatterns 'drawn' on MoS2 films could enhance and photoconductivity

Molybdenum disulfide (MoS2), a class of transition metal dichalcogenide compound, has attracted great attention as an emerging two-dimensional (2D) material due to wide recognition of its potential in and optoelectronics. One of the many fascinating properties of 2D MoS2 film is that its properties depend on the thickness of the film. In addition, its properties can be modified once the film is modified chemically. Hence one of the challenges in this field is the ability to create microdevices out of the MoS2 film comprising components with different thickness or chemical nature.

To address this technological challenge, Prof Sow, Dr Lu Junpeng, a postdoctoral candidate from the Department of Physics at the NUS Faculty of Science, and their team members, utilised an optical microscope-focused laser beam setup to 'draw' micropatterns directly onto large area MoS2 films as well as to thin the films.

Dr Lu Junpeng (left) and Professor Sow Chorng Haur (right) from the Department of Physics at the NUS Faculty of Science working with the customised focused laser machine. Credit: National University of Singapore

With this simple and low cost approach, the scientists were able to use the focused laser beam to selectively 'draw' patterns onto any region of the film to modify properties of the desired area, unlike other current methods where the entire film is modified.

Interestingly, they also found that the electrical conductivity and photoconductivity of the modified material had increased by more than 10 times and about five times respectively. The research team fabricated a photodetector using laser modified MoS2 film and demonstrated the superior performance of MoS2 for such application.

This innovation was first published online in the journal ACS Nano on 24 May 2014.

Hidden images 'drawn' by focused laser beam on silicon nanowires could improve optical functionalities

In a related study published in the journal Scientific Reports on 13 May 2014, Prof Sow led another team of researchers from the NUS Faculty of Science, in collaboration with scientists from Hong Kong Baptist University, to investigate how 'drawing' micropatterns on mesoporous silicon nanowires could change the properties of nanowires and advance their applications.

The team scanned a focused laser beam rapidly onto an array of mesoporous silicon nanowires, which are closely packed like the tightly woven threads of a carpet. They found that the focused laser beam could modify the optical properties of the nanowires, causing them to emit greenish-blue fluorescence light. This is the first observation of such a laser-modified behaviour from the mesoporous silicon nanowires to be reported.

The researchers systematically studied the laser-induced modification to gain insights into establishing control over the optical properties of the mesoporous silicon nanowires. Their understanding enabled them to 'draw' a wide variety of micropatterns with different optical functionalities using the focused laser beam.

To put their findings to the test, the researchers engineered the functional components of the nanowires with interesting applications. The research team demonstrated that the micropatterns created at a low laser power are invisible under bright-field optical microscope, but become apparent under fluorescence microscope, indicating the feasibility of hidden images.

Further research

The fast growing field of electronics and optoelectronics demands precise material deposition with application-specific optical, electrical, chemical, and mechanical properties.

To develop materials with properties that can cater to the industry's demands, Prof Sow, together with his team of researchers, will extend the versatile focused technique to more nanomaterials. In addition, they will look into further improving the of MoS2 and mesoporous silicon with different techniques.

Explore further: Diamond makes laser beams more brilliant

add to favorites email to friend print save as pdf

Related Stories

Diamond makes laser beams more brilliant

May 05, 2014

(Phys.org) —For the first time, researchers have shown that diamond can radically improve the quality of high power laser beams, according to new photonics research published overnight in Laser & Photonics ...

High-performance MoS2 field-effect transistors

Jun 13, 2014

A team of researchers from Purdue University, SEMATECH and SUNY College of Nanoscale Science and Engineeringwill present at the 2014 Symposium on VLSI Technology on their work involving high-performance molybdenum disulfide ...

Copper nanowires could become basis for new solar cells

Apr 26, 2014

(Phys.org) —By looking at a piece of material in cross section, Washington University in St. Louis engineer Parag Banerjee, PhD, and his team discovered how copper sprouts grass-like nanowires that could ...

Recommended for you

A quantum leap in nanoparticle efficiency

10 hours ago

(Phys.org) —New research has unlocked the secrets of efficiency in nanomaterials, that is, materials with very tiny particles, which will improve the future development of chemical sensors used in chemical ...

Gold nanoparticle chains confine light to the nanoscale

Oct 29, 2014

A multidisciplinary team at the Centre d'Elaboration de Matériaux et d'Etudes Structurales (CEMES, CNRS), working in collaboration with physicists in Singapore and chemists in Bristol (UK), have shown that ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.