Scientists measure rock in a hard place

Jul 08, 2014 by Anne M Stark
LLNL scientists have created a tool that allows scientists to probe temperatures of hydrothermal systems in the Earth's crust.

(Phys.org) —Measuring the extreme pressures and temperatures of hydrothermal systems in the Earth's crust is no easy feat.

However, Lawrence Livermore National Laboratory scientists have made a new tool that allows them to pressures up to 20 kbar (20,000 Earth atmospheres of pressure).

The equation of state of the Earth's crust where water-rock interactions occur is believed to be 1,200 degrees Celsius and 60 kbars (60,000 atmospheres of pressure). Whereas earlier tools could only go up to 5 kbars (5,000 ), the new LLNL nuclear magnetic resonance (NMR) probe can measure four times more.

Aqueous geochemical reactions involving common crustal elements/compounds such as aluminum, silicates, magnesium, carbonates, sulfur and boron, have been examined experimentally using diamond-anvil cells coupled to Raman spectroscopy in an attempt to extract thermodynamic properties.

"The development of a new high-resolution spectroscopic technique would complement these measurements and allow for a better understanding of high-pressure aqueous chemistry," said LLNL's Stephen Harley, one of the authors of a paper appearing in an upcoming issue of the journal, Angewandte.

NMR spectroscopy has already emerged as a powerful analytical technique to monitor chemical processes within the environment. The advancements in high-resolution, high-pressure probe design has allowed for the study of geochemical reaction dynamics and has enabled monitoring of the pressure dependencies of critical micelle concentrations, quantification of dissolved gases in solution to monitor catalytic reactions, as well as several biological studies probing protein folding, aggregation and stabilization of rare high-energy states.

"Despite the tremendous scientific advancement from these studies, the current NMR probe designs cannot fully accommodate both the high pressures and high-resolution molecular-level data needed to begin to evaluate the geochemical model," Harley said.

Explore further: High-strength materials from the pressure cooker

add to favorites email to friend print save as pdf

Related Stories

High-pressure science gets super-sized

Oct 24, 2012

(Phys.org)—The study of materials at extreme conditions took a giant leap forward with the discovery of a way to generate super high pressures without using shock waves whose accompanying heat turns solids to liquid.

Diamond defect boosts quantum technology

Feb 04, 2014

New research shows that a remarkable defect in synthetic diamond produced by chemical vapor deposition allows researchers to measure, witness, and potentially manipulate electrons in a manner that could lead ...

Studies would lead to lighter, cheaper magnets

Dec 23, 2013

(Phys.org) —Sometimes you have to apply a little pressure to get magnetic materials to reveal their secrets. By placing a permanent magnet under high pressures, Lawrence Livermore researchers are exploring ...

High-strength materials from the pressure cooker

May 05, 2014

A Surprise in Materials Chemistry: At Vienna University of Technology, materials for lightweight construction, protective clothing or sports equipment can be produced at high temperatures and high pressures. ...

Recommended for you

New insights found in black hole collisions

Mar 27, 2015

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

X-rays probe LHC for cause of short circuit

Mar 27, 2015

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

Swimming algae offer insights into living fluid dynamics

Mar 27, 2015

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

First glimpse inside a macroscopic quantum state

Mar 27, 2015

In a recent study published in Physical Review Letters, the research group led by ICREA Prof at ICFO Morgan Mitchell has detected, for the first time, entanglement among individual photon pairs in a beam ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.