Pressure probing potential photoelectronic manufacturing compound

Jul 31, 2014

Molybdenum disulfide is a compound often used in dry lubricants and in petroleum refining. Its semiconducting ability and similarity to the carbon-based graphene makes molybdenum disulfide of interest to scientists as a possible candidate for use in the manufacture of electronics, particularly photoelectronics.

New work from a team including several Carnegie scientists reveals that becomes metallic under intense pressure. It is published in Physical Review Letters.

Molybdenum disulfide crystalizes in a layered structure, with a sheet of molybdenum atoms sandwiched between sheets of . But it was theorized that changing this structure, without inducing impurities into it, could turn it into a metal. That is, a structural transition might enable electrons to flow smoothly.

The team—including Carnegie's Alexander Goncharov, Haidong Zhang, Sergey Lobanov, and Xiao-Jia Chen—found a way to induce this metallic state by putting molybdenum disulfide under pressure in .

They found that molybdenum disulfide underwent structural changes as the pressure increased, and the compound began changing into a new phase. The team was able to determine that these changes were due to lateral shifting of the layers of and sulfur.

This process started above 197,000 times normal (20 gigapascals), under which the new phase and interlayer stacking arrangement starts to appear and exist in conjunction with the old phase. The complete takeover of the new phase occurs at around 395,000 times normal atmospheric pressure (40 gigapascals), after which the compound became metallic.

They found that all of these changes were reversible when the pressure was decreased again.

"More work is needed to determine whether application of further pressure could yield superconductivity, a rare physical state in which mater is able to maintain a flow of electrons without any resistance at all," Goncharov said.

The rest of the team is comprised of lead author Zhen-Hua Chi of the Chinese Academy of Sciences, co-author Xiao-Miao Zhao of the Center for High Pressure Science and Technology Advanced Research and South China University of Techonology, and co-authors Tomoko Kagayama and Masafumi Sakata of Osaka University.

Explore further: Move over, silicon? New transistor material tested

add to favorites email to friend print save as pdf

Related Stories

Move over, silicon? New transistor material tested

Jun 30, 2014

For the ever-shrinking transistor, there may be a new game in town. Cornell researchers have demonstrated promising electronic performance from a semiconducting compound with properties that could prove a ...

New catalyst converts carbon dioxide to fuel

Jul 30, 2014

Scientists from the University of Illinois at Chicago have synthesized a catalyst that improves their system for converting waste carbon dioxide into syngas, a precursor of gasoline and other energy-rich products, bringing ...

Scalable CVD process for making 2-D molybdenum diselenide

Apr 08, 2014

(Phys.org) —Nanoengineering researchers at Rice University and Nanyang Technological University in Singapore have unveiled a potentially scalable method for making one-atom-thick layers of molybdenum diselenide—a ...

New catalyst could cut cost of making hydrogen fuel

Jul 02, 2013

(Phys.org) —A discovery at the University of Wisconsin-Madison may represent a significant advance in the quest to create a "hydrogen economy" that would use this abundant element to store and transfer energy.

Recommended for you

'Small' transformation yields big changes

Sep 15, 2014

An interdisciplinary team of researchers led by Northeastern University has developed a novel method for controllably constructing precise inter-nanotube junctions and a variety of nanocarbon structures in ...

Aligned carbon nanotube / graphene sandwiches

Sep 12, 2014

By in situ nitrogen doping and structural hybridization of carbon nanotubes (CNTs) and graphene via a two-step chemical vapor deposition (CVD), scientists have fabricated nitrogen-doped aligned carbon nanotu ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

24volts
not rated yet Jul 31, 2014
I know doing research for just knowledge can be useful later at times but I honestly can't see the point in this. What would be any possible useful outcome? If anyone can enlighten me on this subject I would appreciate it.