Physicists propose molecular clock to expose new physics

July 16, 2014 by Bob Yirka report
Credit: S. Schiller et al., Phys. Rev. Lett (2014)

(Phys.org) —A trio of researchers from Germany, Bulgaria and Russia has proposed the idea of using a molecular clock to determine if the electron-proton mass ratio changes over time. In their paper published in Physical Review Letters, Stephan Schiller, Dimitre Bakalov, and Vladimir Korobov describe a theoretical method for building such a clock and why if one were built, it might lead to new physics.

Everyone knows that are the gold standard for timing accuracy—they work by measuring the frequency of radiation as electrons from a single atom move from one energy level to another. In their paper, the researchers suggest that a could be constructed by using a molecule with just two atoms and simultaneously combining multiple frequencies. They suggest such an approach could provide a more accurate assessment of whether the electron-proton mass ratio changes over time.

A lot of physics is based on the assumption that the mass of a proton remains constant over time—pretty much forever. But what if that's not true? What if it grows or shrinks over time? That would mean that the ratio between them and electrons changes as well, and if that's true, then physicists are going to have to come up with some new ideas to explain what that might mean. This is what Schiller et al are trying to find out, they suggest using molecular hydrogen-H2 or hydrogen-deuterium-HD+ as the molecular basis (compared to the larger caesium atoms normally used in atomic clocks) for a . In their paper they describe a theoretical method of using more than two combinations of frequencies and measuring them simultaneously, allowing the effects of shifts to be nearly canceled. Their calculations show that the uncertainty that would result from a combination frequency using HD+ would be as low as 5x10-18. To realize the goal of establishing whether the electron-proton changes over time, the same experiment would have to be repeated several years later.

Building such a clock, would be challenging, the researchers acknowledge, but if it could be done, and if the results showed that proton mass does change, it could lead to the discovery of fundamental laws of physics that are not now currently known.

Explore further: Proposed nuclear clock may keep time with the Universe

More information: Simplest Molecules as Candidates for Precise Optical Clocks, Phys. Rev. Lett. 113, 023004 – Published 8 July 2014. dx.doi.org/10.1103/PhysRevLett.113.023004

ABSTRACT
The precise measurement of transition frequencies in cold, trapped molecules has applications in fundamental physics, and extremely high accuracies are desirable. We determine suitable candidates by considering the simplest molecules with a single electron, for which the external-field shift corrections can be calculated theoretically with high precision. Our calculations show that H2+ exhibits particular transitions whose fractional systematic uncertainties may be reduced to 5×10−17 at room temperature. We also generalize the method of composite frequencies, introducing tailored linear combinations of individual transition frequencies that are free of the major systematic shifts, independent of the strength of the external perturbing fields. By applying this technique, the uncertainty of the composite frequency is reduced compared to what is achievable with a single transition, e.g., to the 10−18 range for HD+. Thus, these molecules are of metrological relevance for future studies.

Related Stories

Proposed nuclear clock may keep time with the Universe

March 8, 2012

(PhysOrg.com) -- A proposed new time-keeping system tied to the orbiting of a neutron around an atomic nucleus could have such unprecedented accuracy that it neither gains nor loses 1/20th of a second in 14 billion years ...

Physicists propose a way to make atomic clocks more accurate

November 7, 2012

(Phys.org)—Physicists Andrei Derevianko of the University of Nevada and Victor Flambaum and Vladimir Dzuba of the University of New South Wales have proposed in a paper published in Physical Review Letters a way to improve ...

Proton radius puzzle may be solved by quantum gravity

November 26, 2013

(Phys.org) —Officially, the radius of a proton is 0.88 ± 0.01 femtometers (fm, or 10-15 m). Researchers attained that value using two methods: first, by measuring the proton's energy levels using hydrogen spectroscopy, ...

Accuracy of the NPL caesium fountain clock further improved

February 19, 2014

In 2011, the NPL caesium fountain primary frequency standard (NPL-CsF2) was hailed as the most accurate long-term timekeeper in the world, as it would lose or gain only one second in 138 million years. Now, this level of ...

Theorists propose globally networked entangled atomic clock

June 16, 2014

(Phys.org) —A small team of physicists from the U.S. and Denmark has published a paper in the journal Nature Physics outlining the idea of a collection of atomic clocks located around the world—all networked via entangled ...

Recommended for you

Researchers build bacteria's photosynthetic engine

July 29, 2015

Nearly all life on Earth depends on photosynthesis, the conversion of light energy into chemical energy. Oxygen-producing plants and cyanobacteria perfected this process 2.7 billion years ago. But the first photosynthetic ...

Rogue wave theory to save ships

July 29, 2015

Physicists have found an explanation for rogue waves in the ocean and hope their theory will lead to devices to warn ships and save lives.

Scientists unlock secrets of stars through aluminium

July 29, 2015

Physicists at the University of York have revealed a new understanding of nucleosynthesis in stars, providing insight into the role massive stars play in the evolution of the Milky Way and the origins of the Solar System.

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.