New paths into the world of quasiparticles

Jul 09, 2014
The quasiparticles disperse to both sides of the excitation site on a ion-string, thereby, transporting quantum correlations. Credit: IQOQI

Quasiparticles can be used to explain physical phenomena in solid bodies even though they are not actual physical particles. Physicists in Innsbruck have now realized quasiparticles in a quantum system and observed quantum mechanical entanglement propagation in a many-body system. The researchers have published their work in Nature.

Christian Roos' research team at the Institute for Quantum Optics and Quantum Information at the Austrian Academy of Sciences in Innsbruck has established a new experimental platform for investigating phenomena: In a string of trapped ultracold ions they can precisely initialise, control and measure the states and properties of quasiparticle excitations in a many-body quantum system. "Quasiparticles are a well-established concept in physics to describe the of particles in a simplified way," says Christian Roos.

Entanglement propagation

For the experiment the physicists used a one-dimensional ion-string consisting of between seven and fifteen calcium ions trapped in a vacuum chamber. Laser beams then manipulate the quantum state of the ions. "Each particle behaves like a little quantum magnet interacting with each other," explains Petar Jurcevic, first author of this study. "The precise excitation of one of the particles also affects the other particles. The resulting collective behaviour of the system is called quasiparticles." These quasiparticles disperse to both sides of the excitation site on the ion-string, thereby, transporting quantum correlations. Excitation distribution has previously been observed in experiments with neutral atoms, where correlations between particles have also been shown. "In our experiments we have been able to determine that these correlations are ," says Roos. "By measuring multi-particle correlations we have been able to detect and quantify quantum entanglement." The physicists were, thus, the first to show entanglement propagation in a quantum system.

In contrast to previous experiments, the researchers in Innsbruck can tune the ion-ion interaction range in the system from effectively nearest-neighbour to infinite range. In each case, a new set of quasiparticles is created with unique dynamical properties.

New research with quasiparticles

"With this new scheme we can precisely manipulate the quasiparticles," says an excited Philipp Hauke, one of the authors of this study. "It has taken us decades to come up with ways to precisely control and manipulate quantum . With this platform we can now do the same with quasiparticles and investigate phenomena that we haven't been able to study experimentally." For example, it opens up new paths to study how quantum systems reach equilibrium, including the question of when thermalisation occurs, a process that so far has remained elusive. "Another big goal is to utilize quasiparticles for processing," says Hauke. In addition, this platform could also be used to study the role of transport processes in biological systems. At the moment Christian Roos' research team is working on the idea to investigate interaction processes between two quasiparticles.

Explore further: Experimentally testing nonlocality in many-body systems

More information: Quasiparticle engineering and entanglement propagation in a quantum many-body system, DOI: 10.1038/nature13461

add to favorites email to friend print save as pdf

Related Stories

Experimentally testing nonlocality in many-body systems

Jun 20, 2014

In a recent study published in Science, researchers at ICFO construct multipartite Bell inequalities built from the easiest-to-measure quantities, the two-body correlators, which are capable of revealing ...

Long-range tunneling of quantum particles

Jun 12, 2014

The quantum tunnel effect manifests itself in a multitude of well-known phenomena. Experimental physicists in Innsbruck, Austria, have now directly observed quantum particles transmitting through a whole ...

Quantum computation: Fragile yet error-free

Jun 12, 2014

In a close collaborative effort, Spanish and Austrian physicists have experimentally encoded one quantum bit (qubit) in entangled states distributed over several particles and for the first time carried out ...

Detection of single photons via quantum entanglement

Jul 08, 2013

Almost 200 years ago, Bavarian physicist Joseph von Fraunhofer discovered dark lines in the sun's spectrum. It was later discovered that these spectral lines can be used to infer the chemical composition ...

Recommended for you

First glimpse inside a macroscopic quantum state

Mar 27, 2015

In a recent study published in Physical Review Letters, the research group led by ICREA Prof at ICFO Morgan Mitchell has detected, for the first time, entanglement among individual photon pairs in a beam ...

Theory of the strong interaction verified

Mar 26, 2015

The fact that the neutron is slightly more massive than the proton is the reason why atomic nuclei have exactly those properties that make our world and ultimately our existence possible. Eighty years after ...

3,000 atoms entangled with a single photon

Mar 25, 2015

Physicists from MIT and the University of Belgrade have developed a new technique that can successfully entangle 3,000 atoms using only a single photon. The results, published today in the journal Nature, repres ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jul 09, 2014
I guess the obvious question here is can they create a "quasiwire" such that a quantum event at one end of a long wire can cause a FTL (faster than light) quantum state to appear on the other end that can actually be determined as spin up or spin down, etc. allowing signaling at FTL.
Whydening Gyre
5 / 5 (1) Jul 09, 2014
I dunno, Clay... The 'excitation" mechanism and subsequent measurement translation would still bring the whole process back to "light speed", wouldn't it?
Jul 10, 2014
This comment has been removed by a moderator.
not rated yet Jul 10, 2014
@Whydening, since entanglement effects are FTL, that means even a long chain reaction of entanglement events cascading to each other still takes zero time. This would equate to a "wave function collapse" of an entire set of entangled particles happening all at once.
Jul 14, 2014
This comment has been removed by a moderator.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.