An optomechanical crystal to study interactions among colocalized photons and phonons

Jul 21, 2014 by Icn2

A photon is the quantum particle of light and electromagnetic radiation. A phonon is its equivalent when it comes to mechanical vibrations of matter and heat transmission. Although it might seem surprising, electromagnetic radiation and mechanical vibrations of matter interact and exchange energy at the nanometric scale. This phenomenon has only been described in recent years, and the experimental basis to study such interactions with precision is still being established. Researchers from the Institut Català de Nanociència i Nanotecnologia's (ICN2) Phononic and Photonic nanostructures (P2N) Group, led by the ICREA Research Professor Clivia Sotomayor-Torres, publish today an article in Nature Communications presenting a silicon 1D Optomechanical crystal built up so that it allows to localize in a stable way both phonons and photons. Dr. Jordi Gomis-Bresco and Dr. Daniel Navarro-Urrios are the first authors of the work.

Optomechanical coupling is the interaction between and . This phenomenon can be greatly enhanced by confining both and mechanical displacement in the same cavity. By nanostructuring silicon to form such cavities researchers create artificial crystals at will. Optomechanical crystals are simultaneously photonic and phononic crystals that confine in the same structure photons and phonons. When engineered properly they can lead to strong photon-phonon interaction. 

One of the major issues when working with photon-phonon interaction is the difficulty to properly isolate quantum particles of vibration. Different types of phonons coexist and it has not been possible yet to create the ideal environment where only one phonon family is completely isolated. The work presented today by ICN2's researchers in Nature Communications explains how to design a crystal cavity where optical and mechanical properties can be manipulated separately. Such approach uncouples effectively the design of the optical and the mechanical properties which allows simultaneously achieving a full 1D phononic isolation for mechanical modes and a photonic isolation for transverse electrical optical modes.

Exchanging energy from photons to phonons might be useful, for instance, to manipulate heat dissipation with light. The energy of photons ordered in a laser beam allows the emission of coherent beams of phonons. Confining quantum bits of information will be essential to design quantum computers. All these applications will only become real when the basic research successes achieved recently are consolidated into practical knowledge. Thanks to a new step forward led by ICN2, the study of Optomechanical properties will now be easier and more precise.

Explore further: Quantum computers could greatly accelerate machine learning

More information: J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez and C. M. Sotomayor Torres. A 1D Optomechanical crystal with a complete phononic band gap. Nature Communications, 2014.

Related Stories

Researchers build fully mechanical phonon laser

Mar 19, 2013

( —Researchers working at Japan's NTT Basic Research Laboratories have successfully built an all mechanical phonon laser. In their paper published in Physical Review Letters, the team describes how th ...

Quantum information motion control is now improved

Apr 03, 2012

Physicists have recently devised a new method for handling the effect of the interplay between vibrations and electrons on electronic transport. Their paper is about to be published in the European Physical Journal B. This s ...

Recommended for you

Scientists succeed in linking two different quantum systems

3 hours ago

Physicists at the Universities of Bonn and Cambridge have succeeded in linking two completely different quantum systems to one another. In doing so, they have taken an important step forward on the way to a quantum computer. ...

First glimpse inside a macroscopic quantum state

Mar 27, 2015

In a recent study published in Physical Review Letters, the research group led by ICREA Prof at ICFO Morgan Mitchell has detected, for the first time, entanglement among individual photon pairs in a beam ...

Theory of the strong interaction verified

Mar 26, 2015

The fact that the neutron is slightly more massive than the proton is the reason why atomic nuclei have exactly those properties that make our world and ultimately our existence possible. Eighty years after ...

3,000 atoms entangled with a single photon

Mar 25, 2015

Physicists from MIT and the University of Belgrade have developed a new technique that can successfully entangle 3,000 atoms using only a single photon. The results, published today in the journal Nature, repres ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.