Microscopic rowing—without a cox

Jul 29, 2014
The background is the instantaneous fluid velocity field of one flagellum, color-coded by magnitude, with overlaid arrows showing flow direction. Credit: ID.R. Brumley, K.Y. Wan, M. Polin, and R.E. Goldstein, University of Cambridge.

Many different types of cell, including sperm, bacteria and algae, propel themselves using whip-like appendages known as flagella. These protrusions, about one-hundredth of a millimetre long, function like tiny oars, helping cells move through fluid. Similar, shorter structures called cilia are found on the surfaces of many cells, where they perform roles such as moving liquids over the cell.

Flagella and cilia are remarkably versatile: they transport mucus and expel pathogens from our airways, they establish the left-right asymmetry in developing vertebrate embryos, and transport human eggs through the Fallopian tube. Each cilium or flagellum beats to its own characteristic rhythm, but wherever large groups of these biological paddles are found, they tend to row in sync, as though led by a cox.

Exactly what causes these microscopic rowers to move together is something of a mystery. Experiments in the 1940s demonstrated that the flagella of bull sperm tend to synchronise when they swim close to one another, connected only through the fluid surrounding them. However, the precise mechanism through which groups of cilia and flagella lock into sync with one another is not entirely clear.

A long-standing hypothesis is that movement of the fluid due to the beating flagella could be the reason they move in unison. While previous experimental findings were consistent with mathematical theories describing the , these experiments could not exclude other mechanisms for achieving synchronisation, such as chemical signalling or physical connections between flagella.

Now, using a newly devised experimental procedure, researchers from the University of Cambridge have been able to disentangle the various mechanisms, and show that the fluid motion created by two beating flagella is sufficient by itself to cause them to row in sync. The findings are published today (29 July) in the journal eLife.

The team, based in the Department of Applied Mathematics and Theoretical Physics, included Dr Douglas Brumley (now at MIT), PhD student Kirsty Wan, Dr Marco Polin (now at the University of Warwick), and Professor Raymond E Goldstein.

The group used high-speed imaging and microscopy to observe the flagella of two physically separated cells of a species of green alga called Volvox carteri. Holding the cells on micromanipulators of the kind used in in vitro fertilisation, they were able to vary systematically the spacing between the in the fluid. At wide separations, the two flagella beat at different rates, with rhythms governed by their distinct intrinsic frequencies.

However, the team found that when brought close enough together, the two flagella could lock together into the same rhythm for thousands of beats at a time. In a striking compromise between their natural frequencies, the two flagella each produce flows that are sufficient for the pair to synchronise their motions.

Additionally, by analysing the time series of beating, the team could determine the strength of the interaction between the flagella, which was found to agree with basic fluid dynamical calculations.

"This research was the culmination of many years of work in this area, and we are very excited to see how a quantitative approach to a problem in biology can answer fundamental questions," said Dr Polin.

In separate work led by Drs Brumley and Polin, the group has been investigating the dynamics of thousands of interacting Volvox flagella that produce coherent patterns like Mexican waves in a stadium, which are also apparently driven by hydrodynamic interactions between the filaments.

At the same time, Wan has been investigating the noisy beating of algal flagella, and has discovered that they exhibit beat-to-beat fluctuations that are qualitatively similar to the fluctuations in human heart beats. "Taken together," says Goldstein, "these results indicate the remarkable way in which green algae can serve as model organisms for fluid dynamical problems that relate to human health and disease. In this particular case, the coordination of plays vital roles in phenomena ranging from embryo development to respiratory physiology, and thus the search for the mechanisms underlying synchronisation can yield insights on many fronts."

Explore further: The beat goes on with a new model for artificial flagella

More information: eLife DOI: /10.7554/elife.02750

add to favorites email to friend print save as pdf

Related Stories

Microswimmers hit the wall (w/ video)

Jan 08, 2013

(Phys.org)—New research reveals what happens when swimming cells such as spermatozoa and algae hit a solid wall, and has implications for applications in diagnostics and biofuel production.

Synchronized swimming of algae

Jul 23, 2009

Using high-speed cinematography, scientists at Cambridge University have discovered that individual algal cells can regulate the beating of their flagella in and out of synchrony in a manner that controls their swimming trajectories. ...

Researchers explain emergence of bacterial vortex

Jun 23, 2014

When a bunch of B. subtilis bacteria are confined within a droplet of water, a very strange thing happens. The chaotic motion of all those individual swimmers spontaneously organizes into a swirling vortex ...

Recommended for you

Why does rotting food smell bad?

Dec 16, 2014

When food goes bad and starts to become pungent, it is most often due to the growth of spoilage microbes such as bacteria, yeasts and mold. Odors can come from two sources: chemicals that are released from ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

tadchem
not rated yet Jul 29, 2014
About 40 years ago I consulted with a scriptwriter on a screenplay ("The Slimy Sailboat" - never sold) based on the premise that a sailboat could be coated with a colony of sessile flagellates which could be induced to 'row' in unison (in the script we used 'thumping' on the bow or stern), eliminating viscous drag and adding speed.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.