MicroBooNE particle detector makes its move, with Yale's help

July 10, 2014

If you want to see neutrinos change flavors, you need a hefty detector. Yale University physicists and others at the Fermilab research facility in Illinois recently helped move a massive, 30-ton particle detector into a new building where it will be used to help scientists better understand the enigmatic particles known as neutrinos.

"We started at seven in the morning," said Bonnie Fleming, a physics professor at Yale and founding scientific spokesperson for the experiment. "It was incredibly nerve-wracking. A lot of the postdocs were running behind the truck, each step of the way."

Although the June 23 transport of the 40-foot-long MicroBooNE detector involved only three miles, it represented a huge leap forward in a project that began in 2007. Ultimately, the plan is to collect data with a 170-ton Liquid Argon Time Projection Chamber to spot and measure neutrino interactions.

A $1.1 million National Science Foundation MRI grant to Yale helped pay for various systems within the device and Yale scientists built key elements on campus. Notably, the Yale team in New Haven last year strung 6,000 of the 8,000 wires that make up the active detector element for the experiment.

"We packed them up and put them in a U-Haul," Fleming said.

Along with Fleming, the Yale group includes visiting faculty members Flavio Cavanna and Ornella Palamara; research scientist Eric Church; postdoctoral research associate Andrzej Szelc; graduate students Corey Adams, Elena Gramellini, Ariana Hackenburg and Brooke Russell; and undergraduate student Elizabeth Himwich.

Some of the crew even sported temporary, MicroBooNE hand tattoos.

Neutrinos, one of the world's basic building blocks, spring from the decay of radioactive elements and hurtle through the cosmos at the speed of light. They carry no electric charge and are unaffected by most forces of the universe. They also come in three "flavors" – electron, muon and tau – relating to a trio of charged particles.

Yet sometimes they change flavors. Such subatomic shenanigans are well documented and understood over long distances, but not in short spaces. "Those don't fit into our picture of a standard neutrino model at all," Fleming said. "If these anomalies are oscillations, that would be a major discovery."

That's where MicroBooNE enters the picture. The experiment will examine how neutrinos interact and change within a distance of 500 meters. It will detect and measure interactions among neutrinos, as well as measure cross-sections of neutrinos.

The has been under construction for the past two years. Its new home is located on the Booster Neutrino Beamline, a controlled neutrino stream housed in Fermilab's Liquid Argon Test Facility.

"Now we spend a couple of months completing the installation," Fleming said. The device is expected to begin collecting data by the end of the year.

Explore further: New results confirm standard neutrino theory

More information: For more information about MicroBooNE, visit: www-microboone.fnal.gov/

Related Stories

New results confirm standard neutrino theory

February 16, 2010

(PhysOrg.com) -- In its search for a better understanding of the mysterious neutrinos, a group of experimenters at DOE’s Fermi National Accelerator Laboratory has announced results that confirm the theory of neutrino oscillations ...

Rare find backs shape-shifting neutrino

March 27, 2013

Physicists announced further proof Wednesday for a theory that mysterious particles called neutrinos which go "missing" on the journey from the Sun to Earth are in fact shape-shifting along the way, arriving undetected.

Fermilab sends first neutrino beam to NOvA experiment

September 17, 2013

DOE's Fermilab has switched on its newly upgraded neutrino beam, soon to be the most intense in the world. The laboratory spent the past 15 months upgrading its accelerator complex in preparation for the NOvA experiment, ...

Recommended for you

Quantum computing will bring immense processing possibilities

September 2, 2015

The one thing everyone knows about quantum mechanics is its legendary weirdness, in which the basic tenets of the world it describes seem alien to the world we live in. Superposition, where things can be in two states simultaneously, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.