Meteorite find may be 'missing half' of interstellar collision

Jul 01, 2014 by Bob Yirka report
The Thorsberg quarry and the Mysterious Object. (A) Thorsberg quarry on June 15, 2013. The Österplana church is seen in the back. (B) The Mysterious Object from the Glaskarten 3 bed. The meteorite is 8 × 6.5 × 2 cm in size. It was found in the youngest quarried bed of the Thorsberg quarry, at the top of the section. Credit: Earth and Planetary Science Letters, Volume 400, 15 August 2014, Pages 145–152.

(Phys.org) —A team of researchers with members from the U.S., Sweden and Switzerland studying a meteorite found in a Swedish quarry is reporting that the rock is unlike anything else ever found. In their paper published in Earth and Planetary Science Letters, they suggest the meteorite might just be evidence of a collision between two asteroids millions of years ago.

For several years scientists have debated the reason behind a lull, then sudden resurgence of biodiversity on planet Earth a little over 500 million years ago—some suggest the resurgence was due to a sudden major increase in the number of . The increase, theorists suggest, came about due to an impact between two asteroids, likely somewhere between Jupiter and Mars. Debris from the remains of one of those objects is believed to be the source of L , which have been found in many places around the globe. But, until now, no evidence of the other asteroid has been found on Earth, putting a damper on the theory—some have suggested the second asteroid simply vaporized on impact. The meteorite found in Sweden has reignited interest, however, because it's possible it is a piece of that second asteroid (because it appears to have been part of the same as the L chondrites), which if true, will add a lot of credence to the entire theory that seeks to explain the sudden resurgence of life during the early part of the Ordovician period.

The meteorite was found by quarry workers three years ago—other meteorites have been found in the same quarry before, but all of them were L chondrites. It was different from the other's, the researchers noted, after studying its crystals, but was in the same rock layer and dating in the lab, suggesting it arrived during the same time period as part of a wider meteor shower. While still in the same class of primitive achondrites as L chondrites, it's not exactly the same because of small differences in its elemental composition. The team is hopeful that the finding suggests that others will be found, hopefully some that can offer more evidence of their origin.

The unique has not been given an official name yet—for now it's simply being referred to as the "mysterious object."

Explore further: Research shows collision created Chelyabinsk asteroid

More information: A fossil winonaite-like meteorite in Ordovician limestone: A piece of the impactor that broke up the L-chondrite parent body? Earth and Planetary Science Letters, Volume 400, 15 August 2014, Pages 145–152. www.sciencedirect.com/science/… ii/S0012821X14003367

Abstract
About a quarter of all meteorites falling on Earth today originate from the breakup of the L-chondrite parent body ∼470 Ma ago, the largest documented breakup in the asteroid belt in the past ∼3 Ga. A window into the flux of meteorites to Earth shortly after this event comes from the recovery of about 100 fossil L chondrites (1–21 cm in diameter) in a quarry of mid-Ordovician limestone in southern Sweden. Here we report on the first non-L-chondritic meteorite from the quarry, an 8 cm large winonaite-related meteorite of a type not known among present-day meteorite falls and finds. The noble gas data for relict spinels recovered from the meteorite show that it may be a remnant of the body that hit and broke up the L-chondrite parent body, creating one of the major asteroid families in the asteroid belt. After two decades of systematic recovery of fossil meteorites and relict extraterrestrial spinel grains from marine limestone, it appears that the meteorite flux to Earth in the mid-Ordovician was very different from that of today.

add to favorites email to friend print save as pdf

Related Stories

Research shows collision created Chelyabinsk asteroid

May 23, 2014

(Phys.org) —On February 15 2013, an asteroid exploded about 30 kilometers above Chelyabinsk, Russia. The explosion, shared on video around the world, was the Earth's second largest recorded airburst. By ...

Mercury meteorite among world's rarest rocks

Nov 26, 2013

(Phys.org) —Talk about a precious stone—the largest piece of the only known meteorite from the planet Mercury has found its way to Yale, where it is now on display at the Peabody Museum of Natural History.

Recommended for you

Video: A dizzying view of the Earth from space

3 hours ago

We've got vertigo watching this video, but in a good way! This is a sped-up view of Earth from the International Space Station from the Cupola, a wraparound window that is usually used for cargo ship berthings ...

NEOWISE spots a comet that looked like an asteroid

3 hours ago

Comet C/2013 UQ4 (Catalina) has been observed by NASA's Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) spacecraft just one day after passing through its closest approach to the sun. The comet ...

What the UK Space Agency can teach Australia

3 hours ago

Australia has had an active civil space program since 1947 but has much to learn if it is to capture a bigger share of growing billion dollar global space industry. ...

Discover the "X-factor" of NASA's Webb telescope

4 hours ago

NASA's James Webb Space Telescope and Chandra X-ray observatory have something in common: a huge test chamber used to simulate the hazards of space and the distant glow of starlight. Viewers can learn about ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

Birger
4.8 / 5 (4) Jul 01, 2014
Not "interstellar"*. Should be "interplanetary".

*However, some cosmic dust that enter the Earth's atmosphere and burns as meteors have hyperbolic paths** and are truly interstellar objects. These objects are just dust motes and pose no threats.
**Radar can follow the trail of ions the meteors leave in the atmosphere and recostruct their paths.
hemitite
5 / 5 (1) Jul 01, 2014
Sometimes it's the editor that "crafts" the headlines for these stories... Wouldn't it be great to find a "fossil" meteorite?
Torbjorn_Larsson_OM
5 / 5 (4) Jul 01, 2014
I dunno. It's a Yirka article, which means its anybodies guess as to how closely it follows the press material. :-/