Liquid crystals controlled by magnetic fields may lead to new optical applications

Jul 09, 2014 by Lisa Zyga feature
Top: Scheme showing magnetic control over light transmittance in the novel liquid crystals. B is the alternating magnetic field. The polarized light is seen in yellow. The gray rods represent the polarizers. The magnetic field controls the orientation of the nanorods (seen in orange), which in turn affects the polarization of the light and, then, the amount of light that can pass through the polarizers. Bottom: Images show how a polarization-modulated pattern changes darkness/brightness by rotating the direction of the cross polarizers. The circles and background contain magnetic nanorods aligned at different orientations. By combining magnetic alignment and lithography processes, it is possible to create patterns of different polarizations in a thin composite film and control over the transmittance of light in particular areas. Credit: Wang, et al. ©2014 American Chemical Society

(Phys.org) —Liquid crystals are widely known for their use in LCD TVs, in which quickly changing electrical fields are used to control the molecular order of the liquid crystals. This in turn changes how light is transmitted through the liquid crystals to make the pictures change on the TV screen.

Liquid crystals can also be controlled, or actuated, by switching a magnetic field. Magnetic actuation has the advantage that it doesn't require direct contact, whereas electrical actuation requires contact with electrodes. However, so far all demonstrations of using magnetic fields to actuate liquid crystals have required extremely strong magnetic fields (~ 1 Tesla), limiting their practical use.

Now in a new study published in Nano Letters, researchers Mingsheng Wang, et al., at the University of California, Riverside; and Whittier College in Whittier, California, have demonstrated that weak magnetic fields (1 milliTesla) can effectively actuate liquid crystals. The magnetically actuated liquid crystals exhibit a switching speed of less than 0.01 seconds (frequency above 100 Hz), which is comparable to the performance of commercial liquid crystals based on electrical switching.

Key to the achievement was using magnetic iron oxide nanorods as building blocks to construct the liquid crystals. Due to their magnetic properties, the nanorods' orientations can be controlled by weak magnetic fields. Upon the application of an external magnetic field, the magnetic nanorods align themselves along the field direction.

This video is not supported by your browser at this time.
A liquid crystal being continuously optically switched by a rotating magnetic field. Credit: Wang, et al. ©2014 American Chemical Society

This method provides a way to control the liquid crystals' optical properties because of the relationship between the nanorods' orientations and the amount of light that is transmitted through them. When the nanorods are oriented parallel (0°) or perpendicular (90°) to the polarizer, light intensity is very low so the display is dark. When the nanorods are oriented at 45° relative to the polarizer, light intensity is high so the display is bright. By rotating the magnetic field continuously, the researchers could cause continuous optical switching of the .

Another advantage of constructing liquid crystals out of inorganic nanostructures is that it opens up the possibility of permanently fixing the orientation of certain nanorods with lithography. To demonstrate, the researchers sandwiched a liquid crystal solution containing magnetic nanorods and resin between two pieces of glass. Then they placed a photomask on top, and used a UV light to cure the resin and fix the orientation of the nanorods in the uncovered regions of the photomask. Next, the researchers removed the photomask, rotated the to change the orientation of the unfixed nanorods, and finally used the UV light again to fix these nanorods in the new orientation.

The result was a patterned liquid crystal whose dark and bright areas can be reversed by shifting the axis of the polarizer. Because the pattern is polarization-dependent, it could have applications in anti-counterfeiting devices.

"The liquid crystals can be made in a polymer thin film in which the orientation of magnetic nanorods can be fixed by combining magnetic alignment and lithography processes, thus creating patterns of different polarizations and control over the transmittance of light in particular areas," coauthor Yadong Yin, Professor at University of California-Riverside, told Phys.org. "Such a thin film does not display visual information under normal light, but shows high contrast patterns under polarized light. The contrast of the patterns can also change with the direction of the polarized light, making them immediately very useful for anticounterfeiting or other information encryption applications."

This video is not supported by your browser at this time.
A cured pattern (black grid lines) is not affected by a changing magnetic field, while the uncured spaces in between can be still be optically switched. Credit: Wang, et al. ©2014 American Chemical Society

With its advantageous features such as the electrode-less remote control of its optical properties and ability to fixate the liquid crystal orientation to create polarization patterns, the magnetically actuated liquid crystals could provide a new platform for fabricating other novel optical devices, including displays, waveguides, actuators, and optical modulators.

"Our magnetic liquid crystals show control of the transmittance of light so that they can have direct applications in displays such as signage, posters, writing tablets, and billboards, although their use as high-resolution displays (like computer monitors) might be limited due to the resolution in controlling the magnetic fields," Yin said. "They may also find applications as optical modulators, which are optical communication devices for controlling the amplitude, phase, polarization, and propagation direction of ."

In the future, the researchers plan to further improve the optical properties of the nanorods.

"The absorption of the iron oxide nanorods in the visible spectrum may limit some potential applications," Yin said. "Our next step will be reducing the optical absorption of the iron oxide nanorods, either by modifying the iron oxide nanorods to reduce their absorption or replacing them with other transparent magnetic . Our future efforts will also be made to explore the use of our materials for specific applications. Although we have envisioned many potential applications, it still requires significant efforts to optimize the technology to fit the specific needs of various applications."

Explore further: Let there be light: Chemists develop magnetically responsive liquid crystals

More information: Mingsheng Wang, et al. "Magnetically Actuated Liquid Crystals." Nano Letters. DOI: 10.1021/nl501302s

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Researchers develop world's thinnest electric generator

Oct 15, 2014

Researchers from Columbia Engineering and the Georgia Institute of Technology report today that they have made the first experimental observation of piezoelectricity and the piezotronic effect in an atomically ...

User comments : 0