Laboratory models suggest that stretching forces shaped Jupiter moon's surface

Jul 08, 2014
An image of a tabletop-size analog model (left) shows details of fault systems created by extension that visually match an image by spacecraft Galileo of faulted terrain on Ganymede (right). Credit: Left Image: Courtesy of Southwest Research Institute; Right Image: Courtesy of NASA/JPL SSI image s0552443639

Processes that shaped the ridges and troughs on the surface of Jupiter's icy moon Ganymede are likely similar to tectonic processes seen on Earth, according to a team of researchers led by Southwest Research Institute (SwRI). To arrive at this conclusion, the team subjected physical models made of clay to stretching forces that simulate tectonic action. The results were published in Geophysical Research Letters.

Physical analog models simulate geologic structures in laboratory settings so that the developmental sequence of various phenomena can be studied as they occur. The team—including researchers from SwRI, Wheaton College, NASA's Jet Propulsion Laboratory and NuStar Energy LP—created complex patterns of faults in their models, similar to the ridge and trough features seen in some regions of Ganymede. The models consisted of a "wet clay cake" material possessing brittle characteristics to simulate how the icy moon's lithosphere, the outermost solid shell, responds to stresses by cracking.

The laboratory models suggest that characteristic patterns of ridges and troughs, called grooved terrain on Ganymede, result from its surface being stretched. "The physical models showed a marked similarity to the surface features observed on Ganymede," said co-author Dr. Danielle Wyrick, a senior research scientist in the SwRI Space Science and Engineering Division. "From the experiments, it appears that a process in which the crust breaks into separate blocks by large amounts of extension is the primary mechanism for creating these distinct features."

"Physical analog modeling allows us to simulate the formation of complex three-dimensional geologic structures on Ganymede, without actually going to Ganymede," said co-author Dr. David Ferrill, director of the Earth, Material and Planetary Sciences Department in the SwRI Geosciences and Engineering Division. "These scaled models are able to reproduce the fine geometric details of geologic processes, such as faulting, and to develop and test hypotheses for landscape evolution on planetary bodies."

SwRI researchers previously have used physical analog models to examine the process by which pit crater chains—a series of linear pits, or depressions—develop on Mars, and how magma in the Martian subsurface deforms the surface of the Red Planet.

Explore further: How bad can solar storms get?

More information: The paper, "Physical models of grooved terrain tectonics on Ganymede," by D.W. Sims, D.Y. Wyrick, D.A. Ferrill, A.P. Morris, G.C. Collins, R.T. Pappalardo and S.L. Colton, was published by Geophysical Research Letters, 16 June 2014, Volume 41, Issue 11, pages 3774–3778, DOI: 10.1002/2014GL060359

Related Stories

Ganymede may harbor 'club sandwich' of oceans and ice

May 01, 2014

(Phys.org) —The largest moon in our solar system, a companion to Jupiter named Ganymede, might have ice and oceans stacked up in several layers like a club sandwich, according to new NASA-funded research ...

Recommended for you

How bad can solar storms get?

1 hour ago

Our sun regularly pelts the Earth with all kinds of radiation and charged particles. How bad can these solar storms get?

Mars rover's ChemCam instrument gets sharper vision

1 hour ago

NASA's Mars Curiosity Rover's "ChemCam" instrument just got a major capability fix, as Los Alamos National Laboratory scientists uploaded a software repair for the auto-focus system on the instrument.

GOES-R satellite begins environmental testing

18 hours ago

The GOES-R satellite, slated to launch in 2016, is ready for environmental testing. Environmental testing simulates the harsh conditions of launch and the space environment once the satellite is in orbit. ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

ECOnservative
not rated yet Jul 09, 2014
How large can a rocky moon get before tidal forces tear it apart? Our own moon seems to be near the limit, with Titan also close. BTW, how does Titan keep its atmosphere?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.