Testing completed on James Webb Space Telescope backplane

Jul 09, 2014 by J.d. Harrington
The backplane of NASA’s James Webb Space Telescope was mounted to a structure for static load testing to verify it can withstand the rigors of launch and hold the weight needed to support the telescope in space. Credit: Northrop Grumman

(Phys.org) —NASA's James Webb Space Telescope has reached another development milestone with the completion of static load testing of its primary mirror backplane support structure (PMBSS) moving the telescope one step closer to its 2018 launch.

The PMBSS is the stable platform that holds the telescope's science instruments and the 18 beryllium mirror-segments that form the 21-foot-diameter nearly motionless while the telescope peers into deep space. The primary mirror is the largest mirror in the telescope—the one starlight will hit first.

"Static testing demonstrates the backplane has the structural integrity to withstand the forces and vibrations of launch and is the final test prior to starting the integration of the backplane with the rest of the telescope," said Lee Feinberg, NASA's Optical Telescope Element manager at the agency's Goddard Space Flight Center in Greenbelt, Maryland.

The Northrop Grumman Corporation and ATK of Magna, Utah, completed the testing before delivering the structure to Northrop Grumman's facilities in Redondo Beach, California.

"This is the largest, most complex cryogenically stable structure humans have ever built," said Scott Texter, Optical Telescope Element manager for Northrop Grumman. "Completion of the static testing verifies it can hold the weight it is designed to hold. Now the structural backbone of the observatory is officially verified and ready for integration."

Despite its size and complexity, the PMBSS is one of the most lightweight precision-alignment truss structures ever designed and built. When fully deployed, it measures approximately 24 feet tall by 19.5 feet wide by more than 11.5 feet deep, and weighs only 2,180 pounds. Once fully assembled and populated, the PMBSS will support a mission payload and instruments that weigh more than 7,300 pounds. With a full launch load, it will support the equivalent of 12 times its own weight.

The PMBSS is designed to minimize changes in the shape of the telescope caused when one side is hotter than the other. While the telescope is operating at a range of extremely cold temperatures, between -406 and -343 degrees Fahrenheit, the backplane must not move more than 38 nanometers, approximately 1/1,000 the diameter of a human hair.

Under contract from NASA, Northrop Grumman is the lead contractor for the design and development of the Webb telescope's optics, sunshield and spacecraft. ATK designed, engineered and constructed more than 10,000 parts for the PMBSS at its facilities in Magna. They used composite parts, lightweight graphite materials, state-of-the-art material sciences and advanced fabrication techniques to build the structure.

The next step for the space telescope is to integrate the composite structures with the deployment mechanisms to create the overall Optical Telescope Element (OTE) structure. The OTE structure will then be shipped to Goddard for integration with the mirrors. NASA and Northrop Grumman will perform cryogenic testing of the PMBSS structure after mirror integration is complete.

The James Webb Space Telescope is the world's next-generation space observatory and successor to NASA's Hubble Space Telescope. Designed to be the most powerful ever built, Webb will observe the most distant objects in the universe, provide images of the first galaxies formed and see unexplored planets around distant stars. The Webb telescope is a joint project of NASA, the European Space Agency and the Canadian Space Agency.

Explore further: James Webb Space Telescope backplane arrives at Marshall for testing

add to favorites email to friend print save as pdf

Related Stories

James Webb Telescope flight backplane section completed

Apr 24, 2012

The center section of the backplane structure that will fly on NASA's James Webb Space Telescope has been completed, marking an important milestone in the telescope's hardware development. The backplane will ...

James Webb Telescope's last backbone component completed

Jun 14, 2013

(Phys.org) —Assembly of the backbone of NASA's James Webb Space Telescope, the primary mirror backplane support structure, is a step closer to completion with the recent addition of the backplane support ...

James Webb Telescope gets its wings

Mar 15, 2013

(Phys.org) —A massive backplane that will hold the primary mirror of NASA's James Webb Space Telescope nearly motionless while it peers into space is another step closer to completion with the recent assembly ...

James Webb Space telescope passes a mission milestone

Jan 24, 2014

(Phys.org) —NASA's James Webb Space Telescope has passed its first significant mission milestone for 2014—a Spacecraft Critical Design Review (SCDR) that examined the telescope's power, communications ...

Webb Telescope's 'wormholes' in the clean room

Oct 05, 2012

(Phys.org)—This photo gives a "worms eye" view of a robot arm holding a surrogate or simulated mirror segment (black hexagonal shape) for NASA's James Webb Space Telescope. The arm is placing the surrogate ...

Recommended for you

Tidal forces gave moon its shape, according to new analysis

2 hours ago

The shape of the moon deviates from a simple sphere in ways that scientists have struggled to explain. A new study by researchers at UC Santa Cruz shows that most of the moon's overall shape can be explained by taking into ...

User comments : 0