Novel gene for salt tolerance found in wild soybean

Jul 11, 2014

A team of researchers from The Chinese University of Hong Kong, BGI and other institutes have identified a gene of wild soybean linked to salt tolerance, with implication for improving this important crop to grow in saline soil. This study published online in Nature Communications provides an effective strategy to unveil novel genomic information for crop improvement.

Soybean is an important crop for the world. Due to domestication and human selection, cultivated soybeans have less genetic diversities than their wild counterparts. Among the lost genes, some may play important roles for the adaptation to different environments. In this study, scientists used wild soybean as a resource for investigating the valuable genes that adapt to certain environmental conditions.

They sequenced and assembled a draft genome of wild soybean W05, and developed a recombinant inbred population for genotyping-by-sequencing and phenotypic analyses to identify multiple QTLs relevant to traits of interest in agriculture. Using the de novo sequencing data from this work and their previous germplasm re-sequencing data, the team discovered a novel ion transporter gene, GmCHX1, and suggested it maybe related with .

During the following rapid gain-of-function tests, the gene GmCHX1 was conferred its function on salt tolerance, and suggested GmCHX1 acted probably through lowering the Na+/K+ ratio. The authors assumed that the elimination of GmCHX1 in salt-sensitive germplasms may be an example of negative selection against a stress tolerance gene in unstressed environments. The expression of stress tolerance genes may be an energy burden on the plant if the functions of these genes are not required.

Through this study, researchers developed an efficient strategy using the combination of whole-genome de novo sequencing, high-density-marker QTL mapping by re-sequencing, and functional analyses, which could greatly enhance the efficiency of uncovering QTLs and for beneficial traits in crop breeding.

Explore further: Climate change provides good growing conditions for charcoal rot in soybeans

Related Stories

A new tool for identifying key soybean genes

Feb 19, 2014

U.S. Department of Agriculture (USDA) researchers in Beltsville, Md. have developed a new tool to search for soybean genes that will make soybean plants more productive and better able to resist pests and ...

Salt cress genome yields new clues to salt tolerance

Jul 13, 2012

An international team, led by Institute of Genetics and Developmental Biology, Chinese Academy of Science, and BGI, the world's largest genomics organization, has completed the genomic sequence and analysis of salt cress ...

Recommended for you

Study on pesticides in lab rat feed causes a stir

Jul 02, 2015

French scientists published evidence Thursday of pesticide contamination of lab rat feed which they said discredited historic toxicity studies, though commentators questioned the analysis.

International consortium to study plant fertility evolution

Jul 02, 2015

Mark Johnson, associate professor of biology, has joined a consortium of seven other researchers in four European countries to develop the fullest understanding yet of how fertilization evolved in flowering plants. The research, ...

Making the biofuels process safer for microbes

Jul 02, 2015

A team of investigators at the University of Wisconsin-Madison and Michigan State University have created a process for making the work environment less toxic—literally—for the organisms that do the heavy ...

Why GM food is so hard to sell to a wary public

Jul 02, 2015

Whether commanding the attention of rock star Neil Young or apparently being supported by the former head of Greenpeace, genetically modified food is almost always in the news – and often in a negative ...

The hidden treasure in RNA-seq

Jul 01, 2015

Michael Stadler and his team at the Friedrich Miescher institute for Biomedical Research (FMI) have developed a novel computational approach to analyze RNA-seq data. By comparing intronic and exonic RNA reads, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.