Novel gene for salt tolerance found in wild soybean

July 11, 2014

A team of researchers from The Chinese University of Hong Kong, BGI and other institutes have identified a gene of wild soybean linked to salt tolerance, with implication for improving this important crop to grow in saline soil. This study published online in Nature Communications provides an effective strategy to unveil novel genomic information for crop improvement.

Soybean is an important crop for the world. Due to domestication and human selection, cultivated soybeans have less genetic diversities than their wild counterparts. Among the lost genes, some may play important roles for the adaptation to different environments. In this study, scientists used wild soybean as a resource for investigating the valuable genes that adapt to certain environmental conditions.

They sequenced and assembled a draft genome of wild soybean W05, and developed a recombinant inbred population for genotyping-by-sequencing and phenotypic analyses to identify multiple QTLs relevant to traits of interest in agriculture. Using the de novo sequencing data from this work and their previous germplasm re-sequencing data, the team discovered a novel ion transporter gene, GmCHX1, and suggested it maybe related with .

During the following rapid gain-of-function tests, the gene GmCHX1 was conferred its function on salt tolerance, and suggested GmCHX1 acted probably through lowering the Na+/K+ ratio. The authors assumed that the elimination of GmCHX1 in salt-sensitive germplasms may be an example of negative selection against a stress tolerance gene in unstressed environments. The expression of stress tolerance genes may be an energy burden on the plant if the functions of these genes are not required.

Through this study, researchers developed an efficient strategy using the combination of whole-genome de novo sequencing, high-density-marker QTL mapping by re-sequencing, and functional analyses, which could greatly enhance the efficiency of uncovering QTLs and for beneficial traits in crop breeding.

Explore further: Salt cress genome yields new clues to salt tolerance

Related Stories

Salt cress genome yields new clues to salt tolerance

July 13, 2012

An international team, led by Institute of Genetics and Developmental Biology, Chinese Academy of Science, and BGI, the world's largest genomics organization, has completed the genomic sequence and analysis of salt cress ...

Chinese scientists reveal the genomic enigma of desert poplar

November 25, 2013

In a collaborative study, researchers from Lanzhou University, BGI and other institutes have succeeded in unraveling the whole genome sequence of desert poplar, Populus euphratica, and the genetic bases underlying poplar ...

A new tool for identifying key soybean genes

February 19, 2014

U.S. Department of Agriculture (USDA) researchers in Beltsville, Md. have developed a new tool to search for soybean genes that will make soybean plants more productive and better able to resist pests and diseases.

Recommended for you

New gene map reveals cancer's Achilles heel

November 25, 2015

Scientists have mapped out the genes that keep our cells alive, creating a long-awaited foothold for understanding how our genome works and which genes are crucial in disease like cancer.

Insect DNA extracted, sequenced from black widow spider web

November 25, 2015

Scientists extracted DNA from spider webs to identify the web's spider architect and the prey that crossed it, according to this proof-of-concept study published November 25, 2015 in the open-access journal PLOS ONE by Charles ...

How cells in the developing ear 'practice' hearing

November 25, 2015

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.